Problems

6.1 Sketch the variations of the shape functions N_{j} and N_{m}, given by Eqs. (6.2.18), over the surface of the triangular element with nodes i, j, and m. Check that $N_{i}+N_{j}+$ $N_{m}=1$ anywhere on the element.
6.2 For a simple three-noded triangular element, show explicitly that differentiation of Eq. (6.2.47) indeed results in Eq. (6.2.48); that is, substitute the expression for $[B]$ and the plane stress condition for $[D]$ into Eq. (6.2.47), and then differentiate π_{p} with respect to each nodal degree of freedom in Eq. (6.2.47) to obtain Eq. (6.2.48).
6.3 Evaluate the stiffness matrix for the elements shown in Figure P6-3. The coordinates are in units of inches. Assume plane stress conditions. Let $E=30 \times 10^{6} \mathrm{psi}, v=0.25$, and thickness $t=1 \mathrm{in}$.

(a)

(b)

(c)

Figure P6-3
6.4 For the elements given in Problem 6.3, the nodal displacements are given as

$$
\begin{array}{lll}
u_{1}=0.0 & v_{1}=0.0025 \mathrm{in} . & u_{2}=0.0012 \mathrm{in} . \\
v_{2}=0.0 & u_{3}=0.0 & v_{3}=0.0025 \mathrm{in} .
\end{array}
$$

Determine the element stresses $\sigma_{x}, \sigma_{y}, \tau_{x y}, \sigma_{1}$, and σ_{2} and the principal angle θ_{p}. Use the values of E, v, and t given in Problem 6.3.
6.5 Determine the von Mises stress for problem 6.4.
6.6 Evaluate the stiffness matrix for the elements shown in Figure P6-6. The coordinates are given in units of millimeters. Assume plane stress conditions. Let $E=210 \mathrm{GPa}$, $v=0.25$, and $t=10 \mathrm{~mm}$.
6.7 For the elements given in Problem 6.6, the nodal displacements are given as

$$
\begin{array}{lll}
u_{1}=2.0 \mathrm{~mm} & v_{1}=1.0 \mathrm{~mm} & u_{2}=0.5 \mathrm{~mm} \\
v_{2}=0.0 \mathrm{~mm} & u_{3}=3.0 \mathrm{~mm} & v_{3}=1.0 \mathrm{~mm}
\end{array}
$$

