11.5 Show that for constant body force Z_b acting on an element $(X_b = 0 \text{ and } Y_b = 0)$,

$$\{f_{bi}\} = \frac{V}{4} \left\{ \begin{array}{c} 0\\0\\Z_b \end{array} \right\}$$

where $\{f_{bi}\}$ represents the body forces at node i of the element with volume V.

11.6 Evaluate the \underline{B} matrix for the tetrahedral solid element shown in Figure P11–6. The coordinates are in units of millimeters.

Figure P6-6

11.7 For the element shown in Figure P11-6, assume the nodal displacements have been determined to be

$$u_1 = 0.0$$
 $v_1 = 0.0$ $w_1 = 0.0$ $u_2 = 0.01 \text{ mm}$ $v_2 = 0.02 \text{ mm}$ $w_2 = 0.01 \text{ mm}$ $u_3 = 0.02 \text{ mm}$ $v_3 = 0.01 \text{ mm}$ $v_3 = 0.005 \text{ mm}$ $u_4 = 0.0$ $v_4 = 0.01 \text{ mm}$ $w_4 = 0.01 \text{ mm}$

Determine the strains and then the stresses in the element. Let E=210 GPa and v=0.3.

11.8 For the linear strain tetrahedral element shown in Figure P11–8, (a) express the displacement fields u, v, and w in the x, y and z directions, respectively. Hint: There are

Figure P11-8