16.6 For the spring-mass system shown in Figure P16-6, determine the mass displacement, velocity, and acceleration for five time steps using (a) the central difference method, (b) Newmark's time integration method, and (c) Wilson's method. Let $k=1200 \mathrm{lb} / \mathrm{ft}$ and $m=2$ slugs.

Figure P16-6
16.7 For the bar shown in Figure P16-7, determine the nodal displacements, velocities, and accelerations for five time steps using two finite elements. Let $E=30 \times 10^{6} \mathrm{psi}$, $\rho=0.00073 \mathrm{lb}-\mathrm{s}^{2} / \mathrm{in}^{4}, A=1 \mathrm{in}^{2}$, and $L=100 \mathrm{in}$.

Figure P16-7
16.8 For the bar shown in Figure P16-8, determine the nodal displacements, velocities, and accelerations for five time steps using two finite elements. For simplicity of calculations, let $E=1 \times 10^{6} \mathrm{psi}, \rho=1 \mathrm{lb}-\mathrm{s}^{2} / \mathrm{in}^{4}, A=1 \mathrm{in}^{2}$, and $L=100 \mathrm{in}$. Use Newmark's method and Wilson's method.

Figure P16-8

