Example 3.11-1

Determine directly the normal and shear components, σ_{N} and $\sigma_{\text {oct }}$ on the octahedral plane for the state of stress in Example 3.6-1, and verify the result for $\sigma_{\text {oct }}$ by Eq. 3.11-4.

Solution

From Example 3.6-1, the stress vector on the octahedral plane is given by the matrix product

$$
\left[\begin{array}{rrr}
75 & 0 & 0 \\
0 & 50 & 0 \\
0 & 0 & 25
\end{array}\right]\left[\begin{array}{l}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right]=\left[\begin{array}{l}
75 / \sqrt{3} \\
50 / \sqrt{3} \\
25 / \sqrt{3}
\end{array}\right]
$$

or

$$
\mathbf{t}^{(\hat{\mathbf{n}})}=\frac{\left(75 \hat{\mathbf{e}}_{1}^{*}+50 \hat{\mathbf{e}}_{2}^{*}+25 \hat{\mathbf{e}}_{3}^{*}\right)}{\sqrt{3}}
$$

so that

$$
\sigma_{N}=\mathbf{t}^{(\hat{\mathbf{n}})} \cdot \hat{\mathbf{n}}=\frac{1}{3}(75+50+25)=50 \mathrm{MPa}
$$

Also, from Eq 3.7-2,

$$
\sigma_{\text {oct }}^{2}=\mathbf{t}^{(\hat{\mathbf{n}})} \cdot \mathbf{t}^{(\hat{\mathrm{n}})}-\sigma_{N}^{2}=\frac{1}{3}\left[(75)^{2}+(50)^{2}+(25)^{2}\right]-(50)^{2}=417
$$

and so $\sigma_{\text {oct }}=20.41 \mathrm{MPa}$. By Eq 3.11-4, we verify directly that

$$
\sigma_{\text {oct }}=\frac{1}{3} \sqrt{(75-50)^{2}+(50-25)^{2}+(25-75)^{2}}=20.41 \mathrm{MPa}
$$

Problems

3.1 At a point P, the stress tensor relative to axes $P x_{1} x_{2} x_{3}$ has components $\sigma_{i j}$. On the area element $d S^{(1)}$ having the unit normal $\hat{\mathbf{n}}_{1}$, the stress vector is $\mathbf{t}^{\left(\hat{n}_{1}\right)}$, and on area element $d S^{(2)}$ with normal $\hat{\mathbf{n}}_{2}$ the stress vector is $\mathbf{t}^{\left(\hat{\mathbf{n}}_{2}\right)}$. Show that the component of $\mathbf{t}^{\left(\hat{\mathbf{n}}_{1}\right)}$ in the direction of $\hat{\mathbf{n}}_{2}$ is equal to the component of $\mathfrak{t}^{\left(\hat{\mathbf{n}}_{2}\right)}$ in the direction of $\hat{\mathbf{n}}_{1}$.

