3.2 Verify the result established in Problem 3.1 for the area elements having normals

$$
\begin{aligned}
& \hat{\mathbf{n}}_{1}=\frac{1}{7}\left(2 \hat{\mathbf{e}}_{1}+3 \hat{\mathbf{e}}_{2}+6 \hat{\mathbf{e}}_{3}\right) \\
& \hat{\mathbf{n}}_{2}=\frac{1}{7}\left(3 \hat{\mathbf{e}}_{1}-6 \hat{\mathbf{e}}_{2}+2 \hat{\mathbf{e}}_{3}\right)
\end{aligned}
$$

if the stress matrix at P is given with respect to axes $P x_{1} x_{2} x_{3}$ by

$$
\left[\sigma_{i j}\right]=\left[\begin{array}{rrr}
35 & 0 & 21 \\
0 & 49 & 0 \\
21 & 0 & 14
\end{array}\right]
$$

3.3 The stress tensor at P relative to axes $P x_{1} x_{2} x_{3}$ has components in MPa given by the matrix representation

$$
\left[\sigma_{i j}\right]=\left[\begin{array}{ccc}
\sigma_{11} & 2 & 1 \\
2 & 0 & 2 \\
1 & 2 & 0
\end{array}\right]
$$

where σ_{11} is unspecified. Determine a direction $\hat{\mathbf{n}}$ at P for which the plane perpendicular to $\hat{\mathbf{n}}$ will be stress-free, that is, for which $\mathbf{t}^{(\hat{\mathbf{n}})}=0$ on that plane. What is the required value of σ_{11} for this condition? Answer: $\quad \hat{\mathbf{n}}=\frac{1}{3}\left(2 \hat{\mathbf{e}}_{1}-\hat{\mathbf{e}}_{2}-2 \hat{\mathbf{e}}_{3}\right), \sigma_{11}=2 \mathrm{MPa}$
3.4 The stress tensor has components at point P in ksi units as specified by the matrix

$$
\left[\sigma_{i j}\right]=\left[\begin{array}{rrr}
-9 & 3 & -6 \\
3 & 6 & 9 \\
-6 & 9 & -6
\end{array}\right]
$$

Determine:
(a) the stress vector on the plane at P whose normal vector is

$$
\hat{\mathbf{n}}=\frac{1}{9}\left(\hat{\mathbf{e}}_{1}+4 \hat{\mathbf{e}}_{2}+8 \hat{\mathbf{e}}_{3}\right)
$$

(b) the magnitude of this stress vector

