3.11 At the point *P* rotated axes $Px_1'x_2'x_3'$ are related to the axes $Px_1x_2x_3$ by the transformation matrix

$$[a_{ij}] = \frac{1}{3} \begin{bmatrix} a & 1 - \sqrt{3} & 1 + \sqrt{3} \\ 1 + \sqrt{3} & b & 1 - \sqrt{3} \\ 1 - \sqrt{3} & 1 + \sqrt{3} & c \end{bmatrix}$$

where a, b, and c are to be determined. Determine $\left[\sigma'_{ij}\right]$ if the stress matrix relative to axes $Px_1x_2x_3$ is given in MPa by

$$\left[\sigma_{ij} \right] = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Answer:
$$\left[\sigma'_{ij}\right] = \frac{1}{9} \begin{bmatrix} 11 + 2\sqrt{3} & 5 + \sqrt{3} & -1 \\ 5 + \sqrt{3} & 5 & 5 - \sqrt{3} \\ -1 & 5 - \sqrt{3} & 11 - 2\sqrt{3} \end{bmatrix}$$
 MPa

3.12 The stress matrix referred to axes $Px_1x_2x_3$ is given in ksi by

$$\left[\sigma_{ij} \right] = \begin{bmatrix} 14 & 0 & 21 \\ 0 & 21 & 0 \\ 21 & 0 & 7 \end{bmatrix}$$

Let rotated axes $Px_1'x_2'x_3'$ be defined with respect to axes $Px_1x_2x_3$ by the table of base vectors

(a) Determine the stress vectors on planes at P perpendicular to the primed axes; determine $\mathbf{t}^{(\hat{\mathbf{e}}_1')}$, $\mathbf{t}^{(\hat{\mathbf{e}}_2')}$, and $\mathbf{t}^{(\hat{\mathbf{e}}_3')}$ in terms of base vectors $\hat{\mathbf{e}}_1$, $\hat{\mathbf{e}}_2$, and $\hat{\mathbf{e}}_3$.