3.11 At the point P rotated axes $P x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime}$ are related to the axes $P x_{1} x_{2} x_{3}$ by the transformation matrix

$$
\left[a_{i j}\right]=\frac{1}{3}\left[\begin{array}{ccc}
a & 1-\sqrt{3} & 1+\sqrt{3} \\
1+\sqrt{3} & b & 1-\sqrt{3} \\
1-\sqrt{3} & 1+\sqrt{3} & c
\end{array}\right]
$$

where a, b, and c are to be determined. Determine $\left[\sigma_{i j}^{\prime}\right]$ if the stress matrix relative to axes $P x_{1} x_{2} x_{3}$ is given in MPa by

$$
\left[\sigma_{i j}\right]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Answer: $\quad\left[\sigma_{i j}^{\prime}\right]=\frac{1}{9}\left[\begin{array}{ccc}11+2 \sqrt{3} & 5+\sqrt{3} & -1 \\ 5+\sqrt{3} & 5 & 5-\sqrt{3} \\ -1 & 5-\sqrt{3} & 11-2 \sqrt{3}\end{array}\right] \mathrm{MPa}$
3.12 The stress matrix referred to axes $P x_{1} x_{2} x_{3}$ is given in ksi by

$$
\left[\sigma_{i j}\right]=\left[\begin{array}{rrr}
14 & 0 & 21 \\
0 & 21 & 0 \\
21 & 0 & 7
\end{array}\right]
$$

Let rotated axes $P x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime}$ be defined with respect to axes $P x_{1} x_{2} x_{3}$ by the table of base vectors

	$\hat{\mathbf{e}}_{1}$	$\hat{\mathbf{e}}_{2}$	$\hat{\mathbf{e}}_{3}$
$\hat{\mathbf{e}}_{1}^{\prime}$	$2 / 7$	$3 / 7$	$6 / 7$
$\hat{\mathbf{e}}_{2}^{\prime}$	$3 / 7$	$-6 / 7$	$2 / 7$
$\hat{\mathbf{e}}_{3}^{\prime}$	$6 / 7$	$2 / 7$	$-3 / 7$

(a) Determine the stress vectors on planes at P perpendicular to the primed axes; determine $\mathbf{t}^{\left(\hat{e}_{1}\right)}, \mathbf{t}^{\left(\hat{e}_{2}^{\prime}\right)}$, and $\mathbf{t}^{\left(\hat{e}_{3}^{\prime}\right)}$ in terms of base vectors $\hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}$, and $\hat{\mathbf{e}}_{3}$.

