(b) Project each of the stress vectors obtained in (a) onto the primed axes to determine the nine components of $\left[\sigma_{i j}^{\prime}\right]$.
(c) Verify the result obtained in (b) by a direct application of Eq 3.5-1 of the text.
Answer: $\left[\sigma_{i j}^{\prime}\right]=\frac{1}{7}\left[\begin{array}{rrr}143 & 36 & 114 \\ 36 & 166 & 3 \\ 114 & 3 & -15\end{array}\right] \mathrm{MPa}$
3.13 At point P, the stress matrix is given in MPa with respect to axes $P x_{1} x_{2} x_{3}$ by
Case 1: $\left[\sigma_{i j}\right]=\left[\begin{array}{rrr}6 & 4 & 0 \\ 4 & 6 & 0 \\ 0 & 0 & -2\end{array}\right] \quad$ Case 2: $\left[\sigma_{i j}\right]=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$
Determine for each case
(a) the principal stress values
(b) the principal stress directions.

Answer: (a) Case 1: $\sigma_{(1)}=10 \mathrm{MPa}, \sigma_{(2)}=2 \mathrm{MPa}, \sigma_{(3)}=-2 \mathrm{MPa}$ Case 2: $\sigma_{(1)}=4 \mathrm{MPa}, \sigma_{(2)}=\sigma_{(3)}=1 \mathrm{MPa}$
(b) Case 1: $\hat{\mathbf{n}}^{(1)}= \pm \frac{\hat{\mathbf{e}}_{1}+\hat{\mathbf{e}}_{2}}{\sqrt{2}}, \hat{\mathbf{n}}^{(2)}= \pm \frac{\hat{\mathbf{e}}_{1}-\hat{\mathbf{e}}_{2}}{\sqrt{2}}, \hat{\mathbf{n}}^{(3)}=\mp \hat{\mathbf{e}}_{3}$ Case 2: $\hat{\mathbf{n}}^{(1)}=\frac{\hat{\mathbf{e}}_{1}+\hat{\mathbf{e}}_{2}+\hat{\mathbf{e}}_{3}}{\sqrt{3}}, \hat{\mathbf{n}}^{(2)}=\frac{-\hat{\mathbf{e}}_{1}+\hat{\mathbf{e}}_{2}}{\sqrt{2}}, \hat{\mathbf{n}}^{(3)}=\frac{-\hat{\mathbf{e}}_{1}-\hat{\mathbf{e}}_{2}+2 \hat{\mathbf{e}}_{3}}{\sqrt{6}}$
3.14 When referred to principal axes at P, the stress matrix in ksi units is

$$
\left[\sigma_{i j}^{*}\right]=\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & 12
\end{array}\right]
$$

If the transformation matrix between the principal axes and axes $P x_{1} x_{2} x_{3}$ is

$$
\left[a_{i j}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{rrr}
-\frac{3}{5} & 1 & -\frac{4}{5} \\
a_{21} & a_{22} & a_{23} \\
-\frac{3}{5} & -1 & -\frac{4}{5}
\end{array}\right]
$$

where a_{21}, a_{22}, and a_{23} are to be determined, calculate $\left[\sigma_{i j}\right]$.

