Answer: $\left[\sigma_{i j}\right]=\left[\begin{array}{lll}7 & 3 & 0 \\ 3 & 7 & 4 \\ 0 & 4 & 7\end{array}\right] \mathrm{ksi}$
3.15 The stress matrix in MPa when referred to axes $P x_{1} x_{2} x_{3}$ is

$$
\left[\sigma_{i j}\right]=\left[\begin{array}{rrr}
3 & -10 & 0 \\
-10 & 0 & 30 \\
0 & 30 & -27
\end{array}\right]
$$

Determine

(a) the principal stresses, $\sigma_{\mathrm{I}}, \sigma_{\mathrm{II}}, \sigma_{\mathrm{III}}$
(b) the principal stress directions.

Answers: (a) $\sigma_{\mathrm{I}}=23 \mathrm{MPa}, \sigma_{\mathrm{II}}=0 \mathrm{MPa}, \sigma_{\mathrm{III}}=-47 \mathrm{MPa}$

$$
\text { (b) } \begin{aligned}
\hat{\mathbf{n}}^{(1)} & =-0.394 \hat{\mathbf{e}}_{1}+0.788 \hat{\mathbf{e}}_{2}+0.473 \hat{\mathbf{e}}_{3} \\
\hat{\mathbf{n}}^{(2)} & =0.913 \hat{\mathbf{e}}_{1}+0.274 \hat{\mathbf{e}}_{2}+0.304 \hat{\mathbf{e}}_{3} \\
& \hat{\mathbf{n}}^{(3)}
\end{aligned}=0.110 \hat{\mathbf{e}}_{2}+0.551 \hat{\mathbf{e}}_{2}-0.827 \hat{\mathbf{e}}_{3}{ }_{3}
$$

3.16 At point P, the stress matrix relative to axes $P x_{1} x_{2} x_{3}$ is given in MPa by

$$
\left[\sigma_{i j}\right]=\left[\begin{array}{rrr}
5 & a & -a \\
a & 0 & b \\
-a & b & 0
\end{array}\right]
$$

where a and b are unspecified. At the same point relative to axes $P x_{1}^{*} x_{2}^{*} x_{3}^{*}$ the matrix is

$$
\left[\sigma_{i j}^{*}\right]=\left[\begin{array}{rrr}
\sigma_{\mathrm{I}} & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & \sigma_{\mathrm{III}}
\end{array}\right]
$$

If the magnitude of the maximum shear stress at P is 5.5 MPa , determine σ_{I} and σ_{III}.
Answer: $\sigma_{\mathrm{I}}=7 \mathrm{MPa}, \sigma_{\mathrm{III}}=-4 \mathrm{MPa}$
3.17 The state of stress at point P is given in ksi with respect to axes $P x_{1} x_{2} x_{3}$ by the matrix

$$
\left[\sigma_{i j}\right]=\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & 0 \\
2 & 0 & -2
\end{array}\right]
$$

