Answer:
$$[\sigma_{ij}] = \begin{bmatrix} 7 & 3 & 0 \\ 3 & 7 & 4 \\ 0 & 4 & 7 \end{bmatrix}$$
 ksi

3.15 The stress matrix in MPa when referred to axes $Px_1x_2x_3$ is

$$\begin{bmatrix} \sigma_{ij} \end{bmatrix} = \begin{bmatrix} 3 & -10 & 0 \\ -10 & 0 & 30 \\ 0 & 30 & -27 \end{bmatrix}$$

Determine

(a) the principal stresses, σ_{I} , σ_{II} , σ_{III}

(b) the principal stress directions.

Answers: (a)
$$\sigma_{I} = 23$$
 MPa, $\sigma_{II} = 0$ MPa, $\sigma_{III} = -47$ MPa

(b)
$$\hat{\mathbf{n}}^{(1)} = -0.394\hat{\mathbf{e}}_1 + 0.788\hat{\mathbf{e}}_2 + 0.473\hat{\mathbf{e}}_3$$

 $\hat{\mathbf{n}}^{(2)} = 0.913\hat{\mathbf{e}}_1 + 0.274\hat{\mathbf{e}}_2 + 0.304\hat{\mathbf{e}}_3$
 $\hat{\mathbf{n}}^{(3)} = 0.110\hat{\mathbf{e}}_2 + 0.551\hat{\mathbf{e}}_2 - 0.827\hat{\mathbf{e}}_3$

3.16 At point *P*, the stress matrix relative to axes $Px_1x_2x_3$ is given in MPa by

$$\begin{bmatrix} \sigma_{ij} \end{bmatrix} = \begin{bmatrix} 5 & a & -a \\ a & 0 & b \\ -a & b & 0 \end{bmatrix}$$

where *a* and *b* are unspecified. At the same point relative to axes $Px_1^*x_2^*x_3^*$ the matrix is

$$\begin{bmatrix} \sigma_{ij}^{*} \end{bmatrix} = \begin{bmatrix} \sigma_{I} & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \sigma_{III} \end{bmatrix}$$

If the magnitude of the maximum shear stress at *P* is 5.5 MPa, determine $\sigma_{\rm I}$ and $\sigma_{\rm III}$.

Answer: $\sigma_{I} = 7$ MPa, $\sigma_{III} = -4$ MPa

3.17 The state of stress at point *P* is given in ksi with respect to axes $Px_1x_2x_3$ by the matrix

$$\begin{bmatrix} \sigma_{ij} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & -2 \end{bmatrix}$$