Determine

- (a) the principal stress values and principal stress directions at P
- (b) the maximum shear stress value at P
- (c) the normal $\hat{\mathbf{n}} = n_i \hat{\mathbf{e}}_i$ to the plane at *P* on which the maximum shear stress acts.

Answer: (a) $\sigma_{(1)} = 2 \text{ ksi}$, $\sigma_{(2)} = 1 \text{ ksi}$, $\sigma_{(3)} = -3 \text{ ksi}$

$$\hat{\mathbf{n}}^{(1)} = \frac{2\hat{\mathbf{e}}_1 + \hat{\mathbf{e}}_3}{\sqrt{5}}, \ \hat{\mathbf{n}}^{(2)} = \hat{\mathbf{e}}_2, \ \hat{\mathbf{n}}^{(3)} = \frac{-\hat{\mathbf{e}}_1 + 2\hat{\mathbf{e}}_3}{\sqrt{5}}$$

(b) $(\sigma_{s})_{max} = \pm 2.5 \text{ ksi}$

(c)
$$\hat{\mathbf{n}} = \frac{\hat{\mathbf{e}}_1 + 3\hat{\mathbf{e}}_3}{\sqrt{10}}$$

3.18 The stress tensor at *P* is given with respect to $Ox_1x_2x_3$ in matrix form with units of MPa by

$$\begin{bmatrix} \sigma_{ij} \end{bmatrix} = \begin{bmatrix} 4 & b & b \\ b & 7 & 2 \\ b & 2 & 4 \end{bmatrix}$$

where *b* is unspecified. If $\sigma_{III} = 3$ MPa and $\sigma_{I} = 2\sigma_{II}$, determine

- (a) the principal stress values
- (b) the value of *b*
- (c) the principal stress direction of σ_{II} .

Answer: (a) $\sigma_{I} = 8$ MPa, $\sigma_{II} = 4$ MPa, $\sigma_{III} = 3$ MPa (b) b = 0, (c) $\hat{\mathbf{n}}^{(II)} = \hat{\mathbf{e}}_{1}$

3.19 The state of stress at *P*, when referred to axes $Px_1x_2x_3$ is given in ksi units by the matrix

$$\begin{bmatrix} \sigma_{ij} \end{bmatrix} = \begin{bmatrix} 9 & 3 & 0 \\ 3 & 9 & 0 \\ 0 & 0 & 18 \end{bmatrix}$$

Determine

- (a) the principal stress values at P
- (b) the unit normal $\hat{\mathbf{n}}^* = n_i \hat{\mathbf{e}}_i^*$ of the plane on which $\sigma_N = 12$ ksi and $\sigma_S = 3$ ksi

Answers: (a) $\sigma_{I} = 18$ ksi, $\sigma_{II} = 12$ ksi, $\sigma_{III} = 6$ ksi

(b)
$$\hat{\mathbf{n}}^* = \frac{\hat{\mathbf{e}}_1^* + \sqrt{6\hat{\mathbf{e}}_2^* + \hat{\mathbf{e}}_3^*}}{2\sqrt{2}}$$