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Abstract—Demand response (DR) enables customers to adjust
their electricity usage to balance supply and demand. Most
previous works on DR consider the supply-demand matching
in an abstract way without taking into account the underlying
power distribution network and the associated power flow and
system operational constraints. As a result, the schemes proposed
by those works may end up with electricity consumption/shedding
decisions that violate those constraints and thus are not feasible.
In this paper, we study residential DR with consideration of
the power distribution network and the associated constraints.
We formulate residential DR as an optimal power flow problem
(OPF) and propose a distributed scheme where the load service
entity (LSE) and the households communicate interactively to
compute an optimal demand schedule. To complement our
theoretical results, we also simulate an IEEE test distribution
system. The simulation results demonstrate two interesting effects
of DR. One is the location effect meaning that the households
far away from the feeder tend to reduce more demands in DR.
The other is the rebound effect meaning that DR may create a
new peak after the DR event ends if the DR parameters are not
chosen carefully. The two effects suggest certain rules we should
follow when designing a DR program.

Index Terms—Demand response (DR), distributed algorithms,
distribution networks, optimal power flow (OPF), smart grid.

I. INTRODUCTION

DEMAND response (DR) is a mechanism to enable cus-
tomers to participate in the electricity market in order

to improve power system efficiency and integrate renewable
generation [1]. Most of the existing DR programs in the United
States are for commercial and industrial customers and they
have been well studied. Very few DR programs are in use for
residential customers [2]. However, as smart grid technologies
such as smart metering, smart appliances, and home area
network (HAN) technologies developed significantly over the
past years, residential DR becomes increasingly attractive due
to its great potential [3].

Residential DR requires the coordination of a large number
of households in order to improve the overall power system
efficiency and reliability. Such coordination is usually im-
plemented via pricing signals assuming that customers are
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price responsive. Extensive algorithms [3]–[8] have been pro-
posed in the literature to determine the prices and customers’
responses to the prices. Most of those works consider the
supply-demand matching in DR in an abstract way where the
aggregate demand is simply equal to the supply. However,
households are not isolated with each other, but they are
connected by a power distribution network with the associated
power flow constraints (e.g. Kirchhoff’s laws) and system
operational constraints (e.g. voltage tolerances). As a result,
the schemes proposed by previous works may end up with
electricity consumption/shedding decisions that violate those
constraints and thus are not feasible. There are few works
which consider DR in direct current (DC) distribution net-
works [9]. However, they cannot be applied to the most
widely-used alternating current (AC) distribution networks.

This paper focuses on the design of a DR scheme for a large
number of residential households with consideration of the
AC power distribution network and the associated constraints
in a smart grid where two-way communications between the
load service entity (LSE) and the households are available.
More specifically, we consider a direct residential DR program
where customers who participate in it sign a contract with the
LSE in advance to let the LSE control some of their appliances
for a certain period of time. The home energy management
systems (HEMs) in the participating households can receive
DR control signals from the LSE to coordinate their appliance
operations in order to meet the DR objective in a DR event.
The objective of the DR is to manage the appliances for each
household such that (i) the social welfare (i.e. the customer
utilities minus the power losses) is maximized, (ii) the system
demand is below a certain limit during peak hours, and (iii) the
appliance operational constraints, the power flow constraints,
and the system operational constraints are satisfied.

Specifically, we formulate residential DR as an optimal
power flow problem (OPF) using a branch flow model [10].
The OPF problem is non-convex due to the power flow
constraints and thus is difficult to solve. We relax the problem
to be a convex problem. The convex relaxation is not exact
in general (i.e. the solution to the relaxed problem is not the
same as the solution to the original problem). Recent works
[11]–[13] have derived sufficient conditions under which the
relaxation is exact for radial networks. Roughly speaking,
if the bus voltage is kept around the nominal value and
the power injection at each bus is not too large, then the
relaxation is exact. For detailed conditions, please refer to [11].
More sufficient conditions can be found in [12], [13]. Those
conditions can be checked a priori and hold for a variety of
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IEEE standard distribution networks and real-world networks.
Therefore, we focus on solving the relaxed OPF problem
(OPF-r) in this paper. The OPF-r problem is a centralized
optimization problem. To solve it in a distributed manner,
we propose a DR scheme where the LSE and the HEMs in
the households jointly compute an optimal demand schedule.
In our proposed DR scheme, the HEM in each household
keeps the private information locally (i.e. utility functions
and appliance operational constraints) and the LSE has the
system information (i.e. network topology, line impedances,
power losses, etc.). Therefore, customer privacy (i.e. detailed
appliance-level information) is protected in the DR process.

To complement our theoretical model, we apply the pro-
posed DR scheme to an IEEE test radial distribution system
[14]. The simulation results demonstrate the effectiveness of
our proposed DR scheme and show two interesting effects
of DR. One is the location effect meaning that the households
far away from the feeder tend to reduce more demands in DR.
The other is the rebound effect meaning that DR may create
a new peak after the DR event ends if the DR parameters are
not chosen carefully. The two effects suggest certain rules we
should follow when designing a DR program.

The rest of the paper is organized as follows. We introduce
the system model in Section II and propose the DR scheme in
Section III. Simulation results and the discussions about the
location effect and the rebound effect are provided in Section
IV and conclusions are given in Section V.

II. SYSTEM MODEL

This section describes the system model of the proposed
distributed residential DR scheme. We give an overview of
the system followed by the appliance model, the customer
preference model, the distribution network model, and the
DR model. Those models will be used for designing the DR
scheme in the following section.

A. System Overview

We consider a residential DR over a distribution network,
which is operated by one LSE. In the network, each load bus
is connected with a set of households and there are a total of
H households H := {h1, h2, . . . , hH} in the system. In each
household h ∈ H, there is a HEM system managing a set
of appliances Ah := {ah,1, ah,2, . . . , ah,A} such as air condi-
tioners (ACs), EVs, dryers, etc. The HEM is also connected
with the LSE’s communications network via a smart meter so
that there is a two-way communication link between the LSE
and the household [15]. Since most distribution networks are
radial, we focus on only radial distribution networks in this
paper. The overall system architecture is shown in Fig. 1.

We use a discrete time model with a finite horizon in this
paper. We consider a time period or namely a scheduling
horizon which is divided into T equal intervals ∆t, denoted
by T . For each appliance a ∈ Ah, let ph,a(t) and qh,a(t) be
the real power and reactive power it draws at time t ∈ T .
The complex power of the appliance can be denoted by
sh,a(t) := ph,a(t) + iqh,a(t). The HEM system in each
household is able to gather the power consumption information
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(a) A LSE’s distribution network of H households.

(b) The HEM system in each household.

Fig. 1. An illustration of the system model.

of the appliances {sh,a(t)}a∈Ah
and adjust the electricity

usage to achieve certain energy efficiency for the customer.
If the customer is enrolled in a DR program, the HEM
system can receive DR events issued by the LSE. A DR
event would request the participants to shed or reschedule
their demands in exchange for some incentives. Although it is
possible that customers can change their demands manually,
a fully-automated system which can respond to DR events
automatically is more favorable for residential customers [16].
To implement such an auto DR system, an intelligent control
algorithm is needed for the HEM to manage the operations of
the appliances in order to meet the DR objective.

B. Appliance Model
Household appliances can be classified into three types

in the context of DR: critical, interruptible, and deferrable
loads [6]. Critical loads such as refrigerators, cooking, and
critical lighting should not be shifted or shedded at any time.
Interruptible loads such as ACs and optional lighting can be
shedded during DR. Deferrable loads such as washers, dryers,
and EVs can be shifted during DR but they are required to
consume a certain minimum energy before deadlines to finish
their tasks. Since critical loads cannot participate in DR, we
do not consider them here.

For a given appliance a ∈ Ah, the relationship between the
active power and the reactive power is given by the power
factor ηh,a(t):

ηh,a(t) =
ph,a(t)

|sh,a(t)|
,∀t ∈ T . (1)
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And we characterize an appliance by a set of constraints on
its demand vector ph,a := (ph,a(t), t ∈ T ).

Now we introduce the appliance operational constraints [7].
• For each appliance, the demand is constrained by a

minimum and a maximum power denoted by pmin
h,a (t) and

pmax
h,a (t), respectively:

pmin
h,a (t) ≤ ph,a(t) ≤ pmax

h,a (t),∀t ∈ T . (2)

Note that pmin
h,a (t) and pmax

h,a (t) can be also used to set the
available working time for the appliance. For example, if
the appliance cannot run at time t, then we set pmax

h,a (t) =

pmin
h,a (t) = 0.

• For thermostatically controlled appliances such as ACs
and heaters, the constraint (2) alone is not enough. To
model this kind of appliances, we need to find the
relationship between the indoor temperature T in

h (t) and
the demand vector ph,a (refer to [7] or Section IV
for details). We assume that the customer sets a most
comfortable temperature T comf

h (t) and there is a range
of temperature that the customer can bear, denoted by
[T comf,min

h , T comf,max
h ]. In addition to (2), a thermostatically

controlled appliance can be modeled as:

T comf,min
h ≤ T in

h (t) ≤ T comf,max
h ,∀t ∈ T . (3)

• For deferrable loads, the cumulative energy consumption
of the appliances must exceed a certain threshold in order
to finish their tasks before deadlines. Let Emin

h,a and Emax
h,a

denote the minimum and maximum total energy that
the appliance is required to consume, respectively. The
constraint on the total energy consumed by a deferrable
load is given by:

Emin
h,a ≤

∑
t∈T

ph,a(t)∆t ≤ Emax
h,a . (4)

C. Customer Preference Model

We model customer preference in the DR using the con-
cept of utility function from economics. The utility function
Uh,a(ph,a) quantifies a customer’s benefit or comfort obtained
by running an appliance a ∈ Ah using its demand vector ph,a.
Depending on the type of the appliance, the utility function
may take different forms [7].
• For interruptible loads, the utility is dependent on the

power it draws at time t and may be time variant if
the operation is time sensitive. For example, the utility
function for interruptible loads can be defined as:

Uh,a(ph,a) :=
∑
t∈T

Uh,a (ph,a(t), t) . (5)

• For thermostatically controlled appliances, the utility is
related to the temperature T in

h (t) and the most comfort
temperature T comf

h (t). Therefore, the utility function can
be defined in the form of:

Uh,a(ph,a) :=
∑
t∈T

Uh,a

(
T in
h (t), T comf

h (t)
)
. (6)

TABLE I
NOTATIONS

Vi(t), vi(t)
complex voltage on bus i with
vi(t) = |Vi(t)|2

si(t) = pi(t) + iqi(t) complex load on bus i

Iij(t), `ij(t)
complex current from buses i to j with
`ij(t) = |Iij(t)|2

Sij(t) = Pij(t) + iQij(t) complex power from buses i to j
zij = rij + ixij impedance on line (i, j)

• For deferrable loads, since a customer mainly concerns
if the task can be finished before deadline, we define the
utility as a function of the total energy consumption:

Uh,a(ph,a) := Uh,a

(∑
t∈T

ph,a(t)∆t

)
. (7)

For the rest of the paper, we assume that the utility function
Uh,a(ph,a) is a continuously differentiable concave function
for all h ∈ H, a ∈ Ah.

D. Distribution Network Model

A power distribution network can be modeled as a con-
nected graph G = (N , E), where each node i ∈ N represents
a bus and each link in E represents a branch (line or trans-
former). The graph G is a tree for radial distribution networks.
We denote a branch by (i, j) ∈ E . We index the buses in N
by i = 0, 1, . . . , n, and bus 0 denotes the feeder which has a
fixed voltage and flexible power injection. Table I summarizes
the key notations used in modeling distribution networks for
the ease of reference.

For each branch (i, j) ∈ E , let zij := rij + ixi,j denote the
complex impedance of the branch, Iij(t) denote the complex
current from buses i to j, and Sij(t) := Pij(t)+iQij(t) denote
the complex power flowing from buses i to j.

For each bus i ∈ N , let Vi(t) denote the complex voltage at
bus i and si(t) := pi(t) + iqi(t) denote the complex bus load.
Specifically, the feeder voltage V0 is fixed and given. s0(t) is
the power injected to the distribution system. Each load bus
i ∈ N \{0} supplies a set of households which are connected
to the bus denoted by Hi ⊂ H. The aggregate load at each
bus satisfies:

si(t) =
∑
h∈Hi

∑
a∈Ah

sh,a(t),∀i ∈ N \ {0},∀t ∈ T . (8)

Given the radial distribution network G, the feeder voltage
V0, and the impedances {zij}(i,j)∈E , then the other variables
including the power flows, the voltages, the currents, and the
bus loads satisfy the following physical laws for all branches
(i, j) ∈ E and all t ∈ T .
• Ohm’s law:

Vi(t)− Vj(t) = zijIij(t); (9)

• Power flow definition:

Sij(t) = Vi(t)I
∗
ij(t); (10)

• Power balance:

Sij(t)− zij |Iij(t)|2 −
∑

k:(j,k)∈E

Sjk(t) = sj(t). (11)
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Using equations (9)–(11) and in terms of real variables, we
have [17]: ∀(i, j) ∈ E ,∀t ∈ T ,

pj(t) = Pij(t)− rij`ij(t)−
∑

k:(j,k)∈E

Pjk(t), (12)

qj(t) =Qij(t)− xij`ij(t)−
∑

k:(j,k)∈E

Qjk(t), (13)

vj(t) = vi(t)− 2 (rijPij(t) + xijQij(t)) + (r2ij + x2ij)`ij(t),

(14)

`ij(t) =
Pij(t)

2 +Qij(t)
2

vi(t)
, (15)

where `ij(t) := |Iij(t)|2 and vi(t) := |Vi(t)|2.
Equations (12)–(15) define a system of equations in

the variables (P(t),Q(t),v(t), l(t), s(t)), where P(t) :=
(Pij(t), (i, j) ∈ E), Q(t) := (Qij(t), (i, j) ∈ E), v(t) :=
(vi(t), i ∈ N \ {0}), l(t) := (`ij(t), (i, j) ∈ E), and
s(t) := (si(t), i ∈ N \ {0}). The phase angles of the voltages
and the currents are not included. But they can be uniquely
determined for radial distribution networks [10].

E. DR Model

The objective of the LSE is to deliver reliable and high-
quality power to the customers through the distribution net-
work. However, during peak hours, the system demand may
exceed the capacity or the LSE may need to use expensive
generations to guarantee reliability. The voltages may also
deviate significantly from their nominal values, which reduces
power quality. Thus in this paper, we study DR aiming at
keeping the system demand under a certain limit while meeting
the voltage tolerance constraints during peak hours.

A DR event can be defined by a schedule and a demand limit
(Td, smax), where Td ⊆ T is the schedule which specifies the
start time and the end time of the DR event and smax is the
demand limit imposed by either the system capacity or the
LSE according to the supply.

Given the DR event, the system demand constraint can be
modeled as:

|s0(t)| ≤ smax,∀t ∈ Td, (16)

where s0(t) is the total complex power injected to the distri-
bution system and it is given by:

s0(t) =
∑

j:(0,j)∈E

S0j(t),∀t ∈ T . (17)

We also consider the voltage tolerance constraints in the
distribution network which keep the magnitudes of the voltage
at each load bus within a certain range during a DR event:

V min
i ≤ |Vi(t)| ≤ V max

i , ∀i ∈ N \ {0},∀t ∈ Td. (18)

The allowed voltage range for different distribution systems
can be found in the standard [18].

The objective of the proposed DR scheme is to find a
set of optimal demand vectors to maximize the aggregate
utilities of the appliances in the households and minimize
the power losses in the distribution network subject to the
appliance operational constraints, the power flow constraints,

the system demand constraint, and the system operational
constraints (voltage tolerances).

We define P := (P(t), t ∈ T ), Q := (Q(t), t ∈ T ), v :=
(v(t), t ∈ T ), l := (l(t), t ∈ T ), sh,a := (sh,a(t), t ∈ T ),
and s := (sh,a, h ∈ H, a ∈ Ah). The residential DR can be
formulated as an OPF problem.

OPF:

max
P,Q,v,l,s

∑
h∈H

∑
a∈Ah

Uh,a(ph,a)− κ
∑
t∈T

∑
(i,j)∈E

rij`ij(t)

s.t. (1)− (4), (8), (12)− (18),

where Uh,a(ph,a) is defined by (5)–(7); (1)–(4) are the appli-
ance operational constraints; (8), (12)–(15) are the power flow
constraints; (16) and (17) are the system demand constraints;
(18) is the voltage tolerance constraint; and κ is a parameter
to trade off between customer utility maximization and power
loss minimization. A large κ means that the LSE is more
self-interested in minimizing the power losses rather than
maximizing the customer utilities.

III. DISTRIBUTED DR SCHEME

In this paper, we focus on developing a scalable distributed
DR scheme rather than a centralized scheme due to the large
number of appliances that need to be managed by the scheme.
Moreover, the proposed DR scheme also needs to protect
the privacy for the residential customers. To design such a
distributed DR scheme, we relax the previous OPF problem
to be a convex problem and propose a distributed algorithm to
solve it. The convexity of the relaxed OPF problem guarantees
the convergence of the distributed algorithm.

A. Convexification of OPF

The previous OPF problem is non-convex due to the
quadratic equality constraint in (15) and thus is difficult
to solve. Moreover, most decentralized algorithms require
convexity to ensure convergence [19]. We therefore relax them
to inequalities:

`ij(t) ≥
Pij(t)

2 +Qij(t)
2

vi(t)
, ∀(i, j) ∈ E ,∀t ∈ T . (19)

Now we consider the following convex relaxation of OPF.
OPF-r:

max
P,Q,v,l,s

∑
h∈H

∑
a∈Ah

Uh,a(ph,a)− κ
∑
t∈T

∑
(i,j)∈E

rij`ij(t)

s.t. (1)− (4), (8), (12)− (14), (16)− (19).

OPF-r provides a lower bound to OPF. For an optimal
solution of OPF-r, if the equality in (19) is attained at the
solution, then it is also an optimal solution of OPF. We call
OPF-r an exact relaxation of OPF if every solution to OPF-r
is also a solution of OPF, and vice versa.

The sufficient conditions under which OPF-r is an exact
relaxation of OPF for radial distribution networks have been
derived in previous works [11]–[13]. Roughly speaking, if the
bus voltage is kept around the nominal value and the power in-
jection at each bus is not too large, then the relaxation is exact.
For detailed conditions, please refer to [11]. More sufficient
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conditions can be found in [12], [13]. Those conditions are
verified to hold for many IEEE standard distribution networks
and real-world networks. When OPF-r is an exact relaxation of
OPF, we can focus on solving the convex optimization problem
OPF-r. In this paper, we assume that the conditions for exact
relaxation of OPF to OPF-r specified in [11]–[13] hold for the
radial distribution network and therefore OPF-r is an exact
relaxation of OPF and strong duality holds for OPF-r.

B. Distributed Algorithm

To solve OPF-r in a centralized way, it requires not only the
distribution network information but also the private informa-
tion of the appliances (i.e. utility functions and schedules). In
order to protect customer privacy and make the DR scalable,
we propose a distributed DR scheme to solve the OPF-
r problem using the predictor corrector proximal multiplier
(PCPM) algorithm (refer to [20] or the appendix for details).

Initially set k ← 0. The HEM in each household h ∈ H
sets the initial demand schedule skh,a for each appliance
a ∈ Ah according to its preferable demand schedule. The
HEM then communicates its aggregate demand schedule
skh :=

∑
a∈Ah

skh,a to the LSE. In the meantime, the LSE
randomly chooses the initial ski (t) := pki (t) + iqki (t) and two
virtual control signals {µk

i (t)}t∈T , {λki (t)}t∈T for each bus
i ∈ N \ {0}.

At the beginning of the k-th step, the LSE sends two DR
control signals µ̂k

i (t) := µk
i (t) + γ

(∑
h∈Hi

pkh(t)− pki (t)
)

and λ̂ki (t) := λki (t) + γ
(∑

h∈Hi
qkh(t)− qki (t)

)
to the HEMs

in households h ∈ Hi for all t ∈ T , where γ is a positive
constant. Then,
• The HEM in each household h ∈ Hi solves the following

problem for each appliance a ∈ Ah.
DR-household:

max
sh,a

Uh,a(ph,a)− (µ̂k
i )Tph,a − (λ̂k

i )Tqh,a

− 1

2γ
||ph,a − pk

h,a||2 −
1

2γ
||qh,a − qk

h,a||2

s.t. (1)− (4),

where µ̂k
i := (µ̂k

i (t), t ∈ T ) and λ̂k
i := (λ̂ki (t), t ∈ T ).

The optimal s∗h,a is set as sk+1
h,a .

• The LSE solves the following problem for each time t ∈
T .
DR-LSE:

max
P(t),Q(t),

v(t), l(t), s(t)

(µ̂k(t))Tp(t) + (λ̂k(t))Tq(t)

−κ
∑

(i,j)∈E

rij`ij(t)−
1

2γ
||p(t)− pk(t)||2

− 1

2γ
||q(t)− qk(t)||2

s.t. (12)− (14), (16)− (19),

where µ̂k(t) := (µ̂k
i (t), i ∈ N \ {0}) and λ̂k(t) :=

(λ̂ki (t), i ∈ N \{0}). The optimal s∗(t) is set as sk+1(t).

Algorithm 1 - The Proposed Distributed DR Scheme.
1: initialization k ← 0. The HEM sets the initial skh,a and returns

the aggregate demand schedule skh to the LSE. The LSE sets the
initial µk

i (t), λ
k
i (t) and the initial ski (t) randomly.

2: repeat
3: The LSE updates µ̂k

i (t) and λ̂k
i (t) and sends the DR control

signals µ̂k
i and λ̂k

i to the HEMs in the households h ∈ Hi.
4: The HEM in each household calculates a new demand sched-

ule sk+1
h,a for each appliance a ∈ Ah by solving the DR-

household problem.
5: The LSE computes a new sk+1(t) for each time t ∈ T by

solving the DR-LSE problem.
6: The HEM communicates the aggregate demand schedule sk+1

h
to the LSE.

7: The LSE updates µk+1
i (t) and λk+1

i (t).
8: k ← k + 1.
9: until convergence

At the end of the k-th step, the HEM in household
h communicates its aggregate demand schedule sk+1

h :=∑
a∈Ah

sk+1
h,a to the LSE and the LSE updates µk+1

i (t) :=

µk
i (t)+γ

(∑
h∈Hi

pk+1
h (t)− pk+1

i (t)
)

and λk+1
i (t) := λki (t)+

γ
(∑

h∈Hi
qk+1
h (t)− qk+1

i (t)
)

for all i ∈ N \ {0} and all
t ∈ T . Set k ← k+1, and repeat the process until convergence.

A complete description of the proposed DR scheme can
be found in Algorithm 1. When γ is small enough, the above
algorithm will converge to the optimal solution of OPF-r which
is also the optimal solution of OPF if the relaxation is ex-
act, and

(∑
h∈Hi

pkh(t)− pki (t)
)

and
(∑

h∈Hi
qkh(t)− qki (t)

)
will converge to zero [20]. As we can see, the LSE and
the HEMs in the households communicate interactively to
compute the optimal demand schedule. Therefore, the two-way
communications network in the distribution system is crucial
to implement the proposed DR scheme. Notice that after the
LSE and the customers jointly compute the optimal demand
schedule over t ∈ T , the LSE only controls the demands
during the DR period according to the optimal schedule over
t ∈ Td. The customers may or may not follow the optimal
demand schedule exactly for the rest of the time T \ Td.

In the proposed DR scheme, the private information of the
customer including the utility functions Uh,a(ph,a) and the
appliance operational constraints (1)–(4) appears only in the
DR-household problem which is solved by the HEM owned
by the customer. The LSE solves the DR-LSE problem using
the system information including the power flow constraints
(12)–(14) and (19), the system demand constraints (16) and
(17), the voltage tolerance constraints (18), and the power
losses

∑
(i,j)∈E rij`ij(t). Therefore, there’s no appliance-level

information gathered by the LSE and customer privacy can be
protected in the DR process.

IV. PERFORMANCE EVALUATION

In this section, we demonstrate the proposed DR scheme
by applying it to an IEEE standard distribution system. We
first describe the distribution system used in the simulation
and give the parameters of the scheme. Then we present the
simulation results of the proposed DR scheme and discuss the
interesting effects that we observe from the simulation.
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Fig. 2. The modified IEEE standard distribution system.

A. Simulation Setup

We use the IEEE 13-node test feeder [14] as the power
distribution system which is shown in Fig. 2.1 We assume
that there are 10 households connected to each load bus. In
the simulation, a day starts from 8 am. The time interval
∆t in the model is one hour and we denote a day by
TD := {8, 9, . . . , 24, 1, . . . , 7} where each t ∈ TD denotes
the hour of [t, t + 1]. The scheduling horizon T used by the
LSE to calculate the optimal DR strategy is chosen to be
T := {ts, ts + 1, . . . , 7} ⊆ TD, where ts is the time that
the DR event starts.

A total of 6 different appliances including ACs, EVs,
washers, dryers, lighting, and plug loads are considered in
the simulation. The power factor of each appliance ηh,a(t)
is assumed to be constant and its value is selected randomly
from [0.8, 0.9]. We further assume that there is a preferable
demand schedule (i.e. the baseline power consumption without
any DR incentives) for each appliance denoted by ppref

h,a :=

(ppref
h,a(t), t ∈ T ). Detailed descriptions for the appliances are

given as follows:
1) ACs: An AC is a thermostatically controlled appliance.

Let T out
h (t) denote the outside temperature. We assume that

the indoor temperature evolves according to [7]:

T in
h (t) = T in

h (t− 1) + α
(
T out
h (t)− T in

h (t− 1)
)

+ βph,a(t),
(20)

where α and β are the thermal parameters of the environment
and the appliance, respectively. α is a positive constant and β
is positive if the AC is running in the heating mode or negative
in the cooling mode. Using (20), we define the utility of an AC
as Uh,a

(
T in
h (t), T comf

h (t)
)

:= ch,a − bh,a
(
T in
h (t)− T comf

h (t)
)2

,
where bh,a and ch,a are positive constants.

1In order to exemplify the effect of DR on both the households and the
distribution network, we made several changes to the standard IEEE 13-node
test feeder: the inline transformer between node 633 and node 634 is omitted,
the switch between node 671 and node 692 is closed, and the line lengths
are increased by 5 times. The feeder has a nominal voltage of 4.16kV. Since
our focus is on residential customers, we assume that there is a secondary
distribution transformer at each load bus which scales the voltage down to
120/240V to serve multiple households.
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Fig. 3. Outside temperature of a day.

In the simulation, we choose the thermal parameters as
α = 0.9 and β is chosen randomly from [−0.008,−0.005].
The outside temperature of the day is given in Fig. 3 which
is a typical summer day in Southern California. For each
household, we assume the comfortable temperature range to
be [70F, 79F] and the most comfortable temperature T comf

h (t)
is chosen randomly from [73F, 76F]. The maximum and min-
imum power are pmax

h,a = 4kW and pmin
h,a = 0kW, respectively.

2) EVs: An EV is a deferrable load. We assume that the
EV arriving time th,e is randomly chosen from [17, 19]. It
starts charging immediately after arriving and must finish
charging before t = 6. The maximum and minimum charging
rates are pmax

h,a = 3kW and pmin
h,a = 0kW, respectively.

The maximum charging requirement Emax
h,a is chosen ran-

domly from [20kWh, 24kWh] and Emin
h,a is chosen randomly

from [15kWh, 18kWh]. The utility function is in the form
of Uh,a(ph,a) := bh,a

(∑
t∈T ph,a(t)

)
−
∑

t∈T t|ph,a(t) −
ppref
h,a(t)|+ ch,a.
3) Washers: A washer is a deferrable load. Its starting

time th,w is chosen randomly from [th,e, 20]. It must fin-
ish its job within 2 hours. The maximum and minimum
power are pmax

h,a = 700W and pmin
h,a = 0W, respectively.

The maximum energy requirement Emax
h,a is chosen randomly

from [900Wh, 1200Wh] and Emin
h,a is chosen randomly from

[600Wh, 800Wh]. The utility function takes the same form as
that of an EV.

4) Dryers: A dryer is a deferrable load. It starts working at
th,w+2 and must finish before t = 1. The maximum and min-
imum power are pmax

h,a = 5kW and pmin
h,a = 0kW, respectively.

The maximum energy requirement Emax
h,a is chosen randomly

from [7.5kWh, 10kWh] and Emin
h,a is chosen randomly from

[4kWh, 5kWh]. The utility function takes the same form as
that of an EV.

5) Lighting: Lighting is an interruptible load. Its working
time is [19, 24] ∪ [1, 7]. The maximum and minimum power
are pmax

h,a = 1.0kW and pmin
h,a = 0.5kW, respectively. The

utility function takes the form of Uh,a (ph,a(t), t) := ch,a −
bh,a(ph,a(t)− ppref

h,a(t))2.
6) Plug Loads: Plug loads include other common house-

hold appliances such as TVs, home theaters, PCs, etc. They
belong to interruptible loads. The maximum and minimum
power are pmax

h,a = 500W and pmin
h,a = 0W, respectively. The

utility function takes the same form as that of lighting.
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Fig. 4. Load profile of the feeder |s0(t)| without and with DR.
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B. Case Study

We simulate our proposed DR scheme in the modified IEEE
standard distribution system. The voltage at the feeder V0
is assumed to be fixed at 4.16kV and there are no voltage
regulators or capacitors on the distribution lines. The minimum
allowed voltage at each load bus V min

i is set to be 4.05kV
[18]. The parameters in our proposed DR scheme are chosen
as κ := 0.01 and γ := 0.25.

We use the preferable schedules of the appliances as the
baseline in the simulation. More specifically, the AC keeps
the indoor temperature to the most comfortable temperature
T comf
h (t) all day. The EV, the washer, and the dryer run at

their maximum power pmax
h,a (t) until the maximum energy

requirement Emax
h,a is met. Lighting and the plug loads use

the power as they request.
The load profile of the feeder |s0(t)| without DR is shown

by the dashed line in Fig. 4. It can be seen that the system
demand is low for most of the day. The peak starts at t = 19
and lasts until t = 23. The dashed line in Fig. 5 shows the
minimum bus voltage in the distribution network over time. It
can be seen that the minimum bus voltage is below the voltage
rating during the peak hours. By comparing Fig. 4 with Fig.
5, we can find that there is a significant correlation between
the load level and the voltage drop. The higher the demand is,
the more significant the voltage drop is.
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Fig. 6. Load profile of the appliances in one of the households without and
with DR.

To simulate a DR event, we need to choose the DR
parameters including the demand limit smax and the schedule
Td. In our simulation, we assume that the LSE imposes a
demand limit of smax = 0.6MVA during the time period
[19, 24]. The DR period is chosen in a way to prevent the
rebound effect which will be discussed later.

The simulated load profile of the feeder |s0(t)| with DR
is shown by the solid line in Fig. 4. Note that the LSE only
controls the demands during the peak hours (shown by red).
The load profile after the DR ends is based on the optimal
demand schedules produced by our proposed DR scheme.
The customers may or may not follow the optimal demand
schedules. From Fig. 4, it can be seen that our proposed
DR scheme can effectively manage the appliances of the
households in the distribution network to keep the system
demand under the demand limit during the DR event. The solid
line in Fig. 5 shows the minimum bus voltage profile with DR.
We can see that in addition to keep the system demand below
the limit, our proposed DR scheme is also able to maintain
the bus voltage levels within the allowed range during the DR
event.

Fig. 6 shows the load profile of the appliances in one of
the households without and with DR. Both load shifting and
load shedding can be found in the figure: the deferrable loads
(the EV and the dryer) are shifted and the total energy that the
dryer consumes is reduced. If we compare the daily system
demand without and with DR, we can find a demand reduction
of 0.05MVA which is about 3% of the daily system demand.

Fig. 7 and Fig. 8 show the dynamics of the proposed
distributed DR scheme. As we can see from the figures, both
DR-household and DR-LSE converge fast in the simulation.
For all the simulations, we also verify that the solution to
the centralized OPF-r problem is the same as the solution to
the distributed algorithm using the CVX package [21]. We
further verify that the equality in (19) is attained in the optimal
solution to OPF-r, i.e., OPF-r is an exact relaxation of OPF.
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C. Discussions

1) Location Effect: Fig. 9 and Fig. 10 show the aggregate
load profile of the households at each load bus |si(t)| without
and with DR, respectively. By comparing the two figures, it
can be found that the loads at the buses far away from the
feeder (buses 5–10) contribute more than the loads at the buses
close to the feeder (buses 1–4) to the demand reduction in the
DR event. The shifted demands from on-peak hours to off-peak
hours are largely from the buses far away from the feeder.

The reason for this location effect is due to both the power
loss minimization and the voltage regulation in DR. The power
loss and voltage drop along the distribution line are related to
not only the load level but also the length of the line. As the
length of the distribution line increases, the impedance of the
line increases, leading to a higher power loss and voltage drop.
Therefore, in order to decrease the total power injection into
the distribution system, which includes both the total power
consumption and the power losses, and also to meet the voltage
tolerance constraints, the households at the buses far away
from the feeder must shed or shift more demands than the
households at the buses close to the feeder. This location effect
implies a potential fairness issue in DR since the impacts of
DR on the households are not the same. The LSE may need to
set the DR incentives given to the households differently based
on their locations in the network. Mechanisms to compensate
such location discrimination can be developed in the future.
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Fig. 9. Aggregate load profile of the households at each bus without DR.
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Fig. 10. Aggregate load profile of the households at each bus with DR.

2) Rebound Effect: In the previous simulation, we use the
DR schedule [19, 24]. An interesting rebound effect of DR
can be observed if we reduce the DR period by one hour. The
simulation result using the new schedule [19, 23] is shown
in Fig. 11. It can be seen from the figure that although our
proposed DR scheme is effective to keep the system demand
below the demand limit during the DR period [19, 23], it
creates a rebound peak about 0.8MVA at t = 24 right after the
DR event ends. The rebound effect is not desirable because
the new peak brings the same problems to the system as the
old peak.

The reason for this rebound effect is that when the DR shifts
the peak demands to off-peak periods, it may create another
peak. The rebound effect shown in our simulation suggests that
the LSE should choose the DR parameters (i.e. the demand
limit and the DR schedule) carefully when designing a DR
event. Since the demand limit is usually determined by the sys-
tem capacity and the power supply, the freedom of the design
lies mainly in the DR schedule. Both the load profile and the
voltage profile need to be considered when determining the DR
schedule because the time needed for the demand reduction
and the voltage regulation may not be the same. A protection
time period may also be needed in the DR schedule to prevent
the rebound effect. In our pervious simulation, the protection
period is one hour. Heuristic methods can be developed for the
LSE to set the length of the protection period in the future.
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Fig. 11. Rebound effect of DR.

V. CONCLUSIONS

In this paper, we study residential DR with consideration
of the underlying AC power distribution network and the
associated power flow and system operational constraints. This
residential DR is modeled as an OPF problem. We then
relax the non-convex OPF problem to be a convex problem
and propose a distributed DR scheme for the LSE and the
households to jointly compute an optimal demand schedule.
Using an IEEE test distribution system as an illustration
example, we demonstrate two interesting effects of DR. One
is the location effect meaning that the households far away
from the feeder tend to reduce more demands in DR. The
other is the rebound effect meaning that DR may create a
new peak after the DR event ends if the DR parameters are
not chosen carefully. The two effects suggest certain rules we
should follow when designing a DR program. Future work
includes designing compensation mechanisms for the location
discrimination and heuristic methods to deal with the rebound
effect.
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APPENDIX
INTRODUCTION TO PCPM

In this paper, we develop a distributed DR scheme using
the predictor corrector proximal multiplier (PCPM) algorithm
[20]. PCPM is a decomposition method for solving convex
optimization problem. At each iteration, it computes two
proximal steps in the dual variables and one proximal step
in the primal variables. We give a very brief description of
the PCPM algorithm below.

Consider a convex optimization problem with separable
structure of the form:

min
x∈X ,y∈Y

f(x) + g(y) (21)

s.t. Ax +By = c. (22)

Let z be the Lagrangian variable for the constraint (22).
The steps of the PCPM algorithm to solve the problem are

given as follows:
1) Initially set k ← 0 and choose the initial (x0,y0, z0)

randomly.
2) For each k ≥ 0, update a virtual variable ẑk := zk +

γ(Axk +Byk− c) where γ > 0 is a constant step size.
3) Solve

xk+1 = arg min
x∈X
{f(x) + (ẑk)TAx +

1

2γ
||x− xk||2},

yk+1 = arg min
y∈Y
{g(y) + (ẑk)TBy +

1

2γ
||y − yk||2}.

4) Update zk+1 := zk + γ(Axk+1 +Byk+1 − c).
5) k ← k + 1, and go to step 2 until convergence.
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It has been shown in [20] that the above algorithm will
converge to a primal-dual optimal solution (x∗,y∗, z∗) for a
sufficient small positive step size γ as long as strong duality
holds for the convex problem (21).
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