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pressure on electricity prices, causing significant implications on social welfare. Results from this work
will help policy makers, resource planners, and market designers to make more informed decisions with
the goal of better accommodating more demand response resources in the future.
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Introduction

Nowadays, several emerging issues pose challenge to the tradi-
tional power system operation. Some of these issues include grow-
ing environmental threats, and limited system resources which
force the system operators to operate their system closer to its lim-
its, causing occasional price spikes in electricity markets. Increas-
ing amount of variable renewable energy resources also increases
the generation variability due to their uncertain output. These con-
cerns motivated us to explore and investigate new ways of improv-
ing the efficient utilization of all available resources in power and
market operations.

One of the resources that is drawing increasing attention is the
demand response (DR). Demand response can be defined as any
resource that has the capability to change or reduce the electricity
consumption at a given time. The mode to change the electricity
consumption can be instantaneous or pre-scheduled. Since DR is
a demand side resource, in contrast to supply side resource, the
key players of DR resources are those who consume, not supply,
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electricity. Typically, they are represented by residential, commer-
cial, and industrial customers of electricity.

DR is becoming an integral part of the power system and mar-
ket operational practice. Application of a DR program can provide
better manageability to system operators, optimizing their posi-
tion, and maximizing the revenue opportunities for DR providers.
The inclusion of DR in conjunction with renewable energy, distrib-
uted generation, and plug-in hybrid electric vehicles will provide
benefits to optimize the use of these resources and as a conclusion
improve the efficiency of the system operation.

At the same time, the advances in communications, information
systems, and computer technologies have opened up new opportu-
nities to operate power system in a new way. A good example of
that would be the automatic control of demand at the distribution
level. The controllable demand becomes a very important source of
flexibility which can be used to improve the system controllability,
and which cannot easily be provided by conventional generators,
due to several constraints, such as generator ramp rates. In a sense,
the controllable demand can and should respond quite fast.

Under current market-clearing regime, the traditional generator
scheduling or Unit Commitment (UC) and the Security-Constrained
Unit Commitment (SCUC) programs deal only with fixed demand
estimated by load forecasting process. Incorporating DR into these
programs induces to a complicated objective function and creates
additional constraints which must be dealt more carefully. At
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Nomenclature

t index for simulation hours

b index for cost curve segments

n index for start-up cost curve

g index for generation units

j index for demands

k index for demand blocks

T total number of simulation hours

G total number of thermal units

B total number of segments for production cost curve

Cpg¢ production cost for unit g at hour t $/h

Cupg, start-up cost for unit g at hour t $

Dg¢ active generation for unit g at hour t MW

Tet active reserve contribution of unit g at hour t MW
Obgt active generation for segment b, unit g, hour t MW
Ug binary state variable for unit g, hour ¢

Sg.t start-up variable for unit g, hour t

hg ¢ shut-down variable for unit g, hour ¢t

0 bus voltage angle

f branch flows

X, z penalty variables

A corrective dispatch

T shadow prices for the Network sub problem

DB;, demand bid function value at demand j, hour ¢t
Bidy;;  demand bid value at block k, demand j, hour t $/MW h

d;; demand value for j, hour t MW
D; system demand at time t MW
R; system spinning reserve requirement at hour t MW
MU, minimum up time for unit g h
MD, minimum down time for unit g h
TS number of hours unit g has been off at t =0h
g number of hours unit g has beenon at t =0h
Cg fixed cost for unit g $/h
Fp g slope for segment b, unit g $/MW h
¢ maximum capacity for unit m MW
Py minimum capacity for unit m MW
Kng cost for start-up cost step n, unit g $/h
Trp g active power limits, block b, unit g
RUL, ramp up limit, unit g MW
RDL, ramp down limit, unit g MW
Ys susceptance matrix
f branch flow limits
Cx sub problem costs (set to one)
CByj demand cost value, block k, demand j, hour t $
MWB,;; MW value for block k, demand j, hour t MW
Dj; maximum demand value for demand j, hour t MW
D minimum demand value for demand j, hour t MW

minimum, the objective function and constraints have to be mod-
ified to correctly account for the unique characteristics of DR. Dif-
ferent formulations of objective functions and constraints can lead
to different solutions, which can trigger different market system
outcomes (MW, price schedules, and other subsequent system
outcomes).

Federal Energy Regulatory Commission (FERC) [1] highlights
areas of research related to DR and its inclusion into scheduling
formulation. Proposed areas of research include the study of bene-
fits, potential costs, cost recovery, rate design, and program mar-
keting, payback horizons associated with DR programs. Other
topics include analysis of the impact on the emission mitigation
effects of DR, integration of DR with renewable energy, distributed
generation, and plug-in hybrid electric vehicles (PHEVs), coordina-
tion of different DR programs, utility DR programs with RTO/ISO
demand response programs for organized power markets.

In addition, the “USA National Action Plan” recognizes that for
the United States to realize its full demand response potential,
electricity customers must have access to, and a better understand-
ing of, information about real-time or near-real-time energy prices.
Better price information delivered more clearly will help potential
demand response providers design market offerings, assist utilities
in designing DR-encouraging rates, and help potential DR custom-
ers evaluate whether to participate in a demand response program.

We provide, as below, a brief review of literature on this impor-
tant topic.

Market simulation approach [2] was used to quantify the vari-
able impact of demand response on market performance, genera-
tion dispatch, transmission usage, environmental and other
system effects. The work was done in light of planning and policy
analysis studies. Implementation issues, related to large-scale sys-
tems over longer-term periods were also discussed.

In Ref. 3], although generation scheduling problem was consid-
ered as part of framework for incorporating demand response in a
competitive market, the issue of unit commitment was ignored.
Instead, it tried to solve economic dispatch problem only with
the assumption that a generator is turned off when its output is
zero.

It can be observed from Ref. [4] that the papers from the state of
the art work treat generation in a simplified manner, disregarding
short term operational constraints and demand response is not
considered for short term simulations.

In the literature, several DLC (direct load control) algorithms
have been developed to determine the optimal load control sched-
ules of groups of domestic devices [5,6]. Most of them are based on
linear programming [5,6,7,8], or dynamic programming [9,10], and
tried to minimize peak load [5,6] or electricity production cost
[5,9] over a certain time period.

Demand response, in combination with wind, can provide more
cost-effective emission reductions, than just wind alone, using a
case study based on Texas power system [11]. The authors found
that while wind variability can increase the price, DR can be an
alternative providing the opposite effect to help reduce that price
volatility. Some recent work [12] was done to investigate the
impact of price-based demand response on market clearing and
LMP. The test system used in this work was too small to have
any meaning. Similarly, the work in [13] investigated the effects
of responsive load models on unit commitment in collaboration
with demand-side resources. The author concluded that it is not
possible to obtain the minimum cost for system using an unsuit-
able scheme of demand response programs or unrealistic model
of responsive loads. Authors in [14,15] also solved the stochastic
unit commitment problem with modeling of uncertain demand
response. Integrating commercial demand response resources with
unit commitment was also done in [16].

The aim of this paper is to analyze the utilization patterns of the
DR resources from a system operation point of view, their impact
on the operation of competitive markets, unit commitment solu-
tions, and on market prices. Different types of DR models and
methods are reviewed and the simulations are carried out on IEEE
118 bus system [17]. Based on the results, some recommendations
are made regarding the efficient operation of power system and
power market, with inclusion of DR resources.

The paper is organized as follows. We describe the general clas-
sifications of DR and various DR programs at RTO/ISOs in Section
‘Demand response’. In Section ‘Unit commitment problem
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formulation’, we review the unit commitment problem formula-
tion in the context of day-ahead electricity market, define different
DR models, and formulate new UC problems with DR models.
Numerical results of these formulations are shown in Section
‘Numerical results’ while conclusions are given in the final section.

Demand response
(DR) classifications

Different types of demand response have been proposed in the
industry. FERC classifies the demand response based on how these
programs affect the electricity price and the time frame. Two main
categories of DR programs are defined: the incentive-based pro-
gram and the time-based program. The incentive-based program
is further divided into a classical program and the market-based
program. Within the classical program, two different approaches
have been defined. The first approach is the interruptible/curtaila-
ble program where participants receive incentive upfront pay-
ments or rate discounts. In this program, participants are asked
to reduce their load to predefined values. Otherwise, they will face
penalties. The second approach is the direct load control program
where some of the participants equipments, such as air condition-
ers or water heaters, are remotely controlled or possibly shut down
by utility or system operator.

The other type of incentive-based program is defined as market-
based program. There are four sub-categories in this program:
demand bidding, emergency DR, capacity market, and ancillary ser-
vices market. In the demand bidding program, consumers bid for a
specific load that can be reduced. The bid is accepted in market
clearing solution if it is less than the market price. Otherwise the
customer should curtail the load. In the emergency demand
response program, the demand is paid incentives for load reduction
during a system emergency. For DR program in capacity market, the
load reduction is used to alleviate congestion. Finally, the load cur-
tailment is used to provide reserve in the ancillary services market.

The principal objective of the time-based program is to motivate
participants to change the demand values at different time frames
in order to flatten the demand curve (aka peak shaving). The elec-
tricity price is set to high values for periods when demand reduction
is desirable and is set to low values for periods when demand
increase is preferable. These price differences are set at different
time frames depending on the types of demand response programs:
critical peak, extreme day, time of use or real time program.

NERC’s demand-side management task force [18] classifies the
incentive-based demand response programs into two main catego-
ries: the dispatchable controllable demand response (DCDR) and
dispatchable economic demand response (DEDR). The first cate-
gory includes the capacity, ancillary and emergency demand
response programs while the demand bid program is included in
the second category.

For the purpose of this paper, we can reclassify all available
demand response (DRs) into two broad categories: emergency DR
and economic DR. Emergency DRs are called and dispatched when
system emergency condition requires it to do so. Typically, when
the supply situation in the system becomes tighter, then the task
of balancing supply and demand can be made easier by calling DRs.

On the other hand, the economic DRs are more voluntary in nat-
ure in the sense that the owners of such DRs are willing to reduce
or cut their potential demand if they are reasonably compensated
by means of favorable price in a market setting or by other means.
For example, during a specific market period, if an economic DR
owner bid is 30 $/MW h, and the market clears at 50 $/MW h, then,
that DR will be cleared in that market. In this case, the owner of the
DRs be paid 50 $/MW h (by uniform-pricing rule) for forgoing that
demand consumption.

DR programs at RTO/ISOs and utilities

Different RTO/ISOs have different DR programs. The goal here is
not to provide detailed analysis of DR programs at RTO/ISOs, but to
provide its overview.

For example, PJM operates two main types of demand-related
programs: emergency and economic. Emergency Demand Program
includes Emergency (capacity and energy) DR Programs and Inter-
ruptible Load for Reliability (ILR). Emergency capacity DR is used
only in reliability planning study. In Emergency Energy DR pro-
gram, there are three kinds: annual DR, extended summer DR,
and limited DR. Annual DR can be called upon for an unlimited
number of times in a delivery year and is required to maintain
reduction level for at least a 10 h period. Extended summer DR
can be called upon for an unlimited number of times from June
through October (extended summer period) and is required to
maintain reduction level for at least a 10 h period. Limited DR
can be called for a maximum of 10 interruptions per year and
has a maximum length of a single interruption of 6 h. Economic
demand programs include Price Responsive Demand (PRD), Energy
Efficiency Resource, day-ahead DR, and real-time DR Program.

New York ISO (NYISO) operates five demand response pro-
grams: Emergency DR program, Special Case Resource program,
Targeted Demand Response Program, Day-Ahead DR Program,
and Demand Side Ancillary Service Program. California ISO (CAISO)
supports three types of DR resources: Non Participating Loads, Par-
ticipating Loads, and Proxy Demand resources. ERCOT has an emer-
gency interruptible load service program.

In terms of DR programs at utilities, Baltimore Gas and Electric
(BGE) offers “Peak Rewards”. This DR program is the next genera-
tion of Rider 5. BGE offers credits to customers for installing a
smart switch or smart thermostat. BGE also employs “smart energy
pricing”. BGE piloted various dynamic pricing schemes in 2008 and
2009, including a peak-time rebate and critical peak pricing. These
pilot programs focused primarily on residential customers and
gave them price signals one day in advance of high-priced periods.
As an option for the conservation of energy, BGE offers a number of
rebates and cost buy-down programs for residential and commer-
cial customers.

Similarly, Sacramento Municipal Utility District (SMUD) in
California believed that the smart grid will have a significant
impact on SMUD’s ability to control loads during peak periods.
At Duke Energy in North Carolina, a web-based customer inter-
face directly links the utility-controlled DR to a system in which
DR is one of a host of interactive technology solutions for a
smarter electric grid.

Unit commitment problem formulation
Unit commitment in a day-ahead market framework

The day-ahead electricity market framework, used in this work,
is a simplified market clearing model. This day-ahead market
clearing framework only considers transmission system network,
generator offers, and fixed load, without or with price-sensitive
demand bids (similar to bid-based DRs). The authors understood
that the practical day-ahead electricity market also allows partici-
pation of additional types of financial instruments, such as virtual
bids (incremental offers, decremental bids, and up-to congestion
transactions). Modeling these additional components in the day-
ahead market clearing framework is beyond the scope of this work.
Since our current work is to investigate the impact of DRs on Unit
Commitment (UC) and dispatch in the day-ahead market frame-
work, we will focus on the detailed formulation of UC, without or
with DRs.
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The traditional Unit Commitment (UC) problem [19,20] is for-
mulated as a cost minimization function considering a fixed
demand profile without violating any system or unit’s operational
constraints. The minimization function considers the reduction of
generation cost including production cost, start up cost, and no load
cost. The UC problem can be expressed mathematically as follows:

T G

minZZ(Cpg_t + Cupy,)

P T

(1)

subject to system, unit, and network constraints.

The detailed mathematical formulation for the objective func-
tion as well as the constraints included in the simulated model
are presented next.

Production cost
Considering the incremental cost function represented by the

piecewise function, the production cost function for each unit g
at a simulation period t, can be formulated as:

B
CPgr = Cg Ugt + Y Fog Obge

(2)
b1
Additional constraints that need to be added are:
Dg = Uge Pe + sz:(Sb_g‘t Vg, Vt (3)
=1
(Trig — Pg) < 01g¢ Vg, Vt (4)
016t < (Trig — Po)ug, Vg, Vt (5)
(Trpg —Trp 1) < Opge VE,VE, b=2,....B—1 (6)
Opgt < (Trpg —Trp1g) VE,VE, b=2,...,B-1 (7)
opgr =0 Vg, vt (8)
Ongr < (Pg—Trp_1g) Vg, Vt 9)

Eq. (2) represents the production costs. Egs. (3)-(9) are the piece-
wise linearization of production costs. Fig. 1 illustrates the different
variables used for this formulation.

($/h)

Cpgt

C -

Start up cost

For the start up cost model, a discretized exponential model can
be used. Based on the discretized approximation, a simple mathe-
matical formulation for the start up cost is included per unit g and
per simulation period t:

T
Cup,, > Keg (ug_t - Zugfn) Vg, vt (10
n=1

System constraints

The system restrictions include the power balance equation and
the reserve constraints

G
D= p, =0 (11)
g=1
G
Ri+Di = 1ge <0 (12)
g=1
Minimum on/off conditions
These restrictions can be formulated as follows [21]:
t
> sgi<Ug Vg Vte [MUg+1,T]
i=t-MUg+1
t
> hgi<1-uy Vg, Vte [MDy+1,T] (13)
i=t-MDy+1

For the initial period, the number of periods that the unit is on
or off need to be considered:

i<Tn

Zlfug_,»:o Vg, t=0

i=0

i<ty

> ugi=0 Vg, t=0

i=0

(14)

O‘Q»U

Trog B, Pgt(MW)

Fig. 1. Linear production cost curve.
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Ramp up and down constraints

pg.t - pg_t—l < RULg Vg, vt > 0
Pgi1 — Pgr < RDL; Vg, Vt>0 (15)

Network constraints are included using Bender’s Cuts, this for-
mulation is explained in the next section.

Benders cut constraint

The coupling between the UC problem and the network sub-
problems is done through the economic dispatch variable P~,
which is the solution of problem shown in Egs. (1)-(15). The
sub-problem can be formulated as:

w* = min(cy - X') (16)
subject to:
Y0 =P -D oo

fi<fiz<f 7 _
o constraints for network scenario i€[0,Qnc]
Bi < PI < Pi Tfp

P'—P°| +xi< A" Ty
(17)

In this case, the Benders Cut is created for each network
scenario:

w' + T (P-P) <0 (18)

A more detailed explanation of how the network constrains are
included into the problem using Benders decomposition can be
found in [22-24].

Demand response models

In the UC formulation described in the previous section, the
demand is considered as a fixed value. However, in order to con-
sider the effect of the demand response, a variable demand as a
function of the bid needs to be modeled. One logical alternative
is to model that bid-dependent demand as shown in Fig. 2. Each
price-sensitive demand can submit multiple non-incremental
demand bid blocks as shown in the same figure. Note that the
demand bids are represented by downward-sloping curves.

Mathematically, the demand bid value function can be defined
by:

Qi . .
DBj((djc) = "CByji - Bidyj. Vi, Vt (19)
k=1

where

S ™ Bidy, = die Vi, Vt (20)
k=1

and

Bidyj; < MWB,;, Vj, Vk, Vit (21)

New unit commitment problem with DR models

In this new UC problem formulation, the price sensitive demand
can be introduced into the minimization objective function as
follows:

G

min Z Z(Cpg‘t + Cupy,) — ZDBj.t(dj.t) -dUj, (22)
J

t [g=1

Demand Bid WWh
o Bid (SMWH)  pgg)

CB, , d
CB; |

¢ |

|
CB, !
CB,
MW

T

MWEB, MWJz MWB;  MWEB,

Fig. 2. Price sensitive demand bid blocks.

The additional constraints due to the demand model are:

D" - dUj, < dje <D™ -dU;, Vit (23)
dUj; =0 (or) 1 Vjt (24)
0 if demand resource j is off at period t
au;, = . . . (25)
’ 1 if demand resource j is on at period t
The system constraint must also be modified as:
G
D+ djc— Zpg,t:| =0 WVt (26)
J g=1

Numerical results

The main objective of this work is to simulate and evaluate the
impact of DR on unit commitment, generation dispatch, and resul-
tant LMPs based on the formulation previously described. The IEEE
118 bus test system [17] is used to study the problem. Additional
input data into the UC problem such as the generator bids and
the hourly load profiles are described in Appendix A. The model
is implemented in GAMS using CPLEX as the solver, with all the
parameter options set to the default values.

We classify the study cases into two main categories: without
network constraints and with network constraints.

Without network constraints

First, the system with fixed load, but without any DR resources,
is simulated without any network constraints for a 24 h simulation
time frame. The hourly marginal prices, also known as market
prices (MP) or LMP, are calculated. These results are compared
with those of the same system with a DR resource bid of
9 $/MW h (arbitrarily chosen) up to 500 MW from hour 12 to hour
24. The comparisons of MPs for the two cases are illustrated in
Fig. 3.

The load forecast described in the Appendix illustrates that this
load was larger than the demand max bid of 500 MW, for periods
19 and 20. Therefore, this specific load for those periods was
reduced to 500 MW with DR bids, thus, reducing the market prices
($/MW) accordingly. However, there was also a scheduling impact
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Fig. 3. Resultant MPs for cases with and without DR bids. DR NoDR

for the other hours. Due to such differences in generator schedul- Fig. 5. Bus LMP differences for cases with network congestion at hour 16.

ing, the MPs can increase in other periods as can be seen from peri- 16

ods 13 through 18, as well as in periods 21 and 22. Regardless of -
price variations, the total costs of production are reduced from
the simulation case without DR resource (4312.3) to the simulation e A
case with DR resource (1152.9). Note the significant reduction of _ 1o —— —~ t
production cost in the case with DR resource. S 3 I
For the case with DR resource bid, the DR bid MWs were also % 6
increased to observe the evolution of market prices. Fig. 4 shows =,
the comparison of results for four different DR bid MW values:
500 MW, 1000 MW, 1500 MW, and 2000 MW, denoted by DR500, e “"\/
DR1000, DR1500, and DR2000 respectively in the same figure. 0 e L
Results show that the market prices were reduced by modeling 2 S o NS FNOORNDOONNG O A
and incorporation of the demand response in the market clearing Bus
problem formulation. However, some price spikes can be observed
. NoDR ——DR
when the values of DR MWSs were increased due to the non-
convexity of the unit commitment problem. Therefore, it is Fig. 6. Bus LMP differences for cases with network congestion at hour 18.
recommended that this type of impact should be considered and
evaluated before such a DR program is incorporated into any 16
relevant unit commitment and dispatch problem in an electricity i
market environment. The authors also believe that different power
systems would behave differently with the inclusion of different 12 '\;
amount of DR resources. _ 10 = l
3 3
s v
With network constraints E 6
1
In addition to previous cases (without and with DRs) without 5 o
network constraints, simulations were also carried out for a system
including network constraints. Since the branches in the test sys- 0 AR UL R A LR U L SRR,
tem have no thermal limits, some reasonable limits were added 2 ==Le e SR A
for these branches in order to make the system suitable for the Bus
SCUC simulation, considering some network binding constraints. NODR ——DR

For that reason, the limit for a branch from bus 30 (Sorenson) to . ) ) .
Fig. 7. Bus LMP differences for cases with network congestion at hour 19.
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Fig. 4. Hourly LMP differences for cases with different DR bid MWs.
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4 Table A.2
Cost reduction (in percentage) due to demand bid.
3 A A Demand bid UC total cost SUCU total cost
8 M (% w.r.t base demand) reduction (%) reduction (%)
13
g 2 1.25 3 3
é 2.50 2.3 2
S 1 A 3.75 3.2 3
= 5.00 45 3.5
E l 7.50 73 6
<o v 10.00 10 7
v "“’.13523%3.‘3/?[‘38.128%888833 12.50 14 7.5
Lo R B
-1 “/
-2 B Table A.3
us Generator offers.
Fig. 8. Bus LMP differences between cases of NoDR and Load Response at hour 19. Bus Bid ($/MW h) Bus Bid ($/MW h) Bus Bid ($/MW h)
1 10 49 0.47 90 10
4 10 54 1.72 91 10
Table A.1 6 10 55 10 92 10
Hourly LMP differences [$/MW]. 8 10 56 10 99 10
- - 10 0.22 59 0.61 100 0.38
Period [n] NoBid 500MW  1000MW 1500 MW 2000 MW 12 1.05 61 059 103 2
13 0.61 217 0.61 0.61 0.61 15 10 62 10 104 10
14 0.61 2.17 0.61 0.61 9 18 10 65 0.25 105 10
15 0.61 2 7.14 0.61 0.61 19 10 66 0.25 107 10
16 1.05 9 1.05 9 9 24 10 69 0.19 110 10
17 1.05 9 9 9 9 25 0.43 70 10 111 217
18 1.05 9 9 9 9 26 0.31 72 10 112 10
19 10 9 9 9 9 27 10 73 10 113 10
20 10 9 9 9 9 31 5.88 74 10 116 10
21 1.72 7.14 1.72 1.72 1.72 32 10 76 10
22 0.61 2 7.14 0.61 0.61 34 10 77 10
23 0.47 0.47 0.47 0.47 0.47 36 10 80 0.21
24 0.43 0.43 0.43 0.43 0.43 40 10 85 10
42 10 87 7.14
46 345 89 0.16
bus 38 (EastLima) was set to 83 MVA, the limit for a branch from
bus 9 (Bequine) to bus 10 (Breed) was set to 460 MVA, and the 8000
limit for a branch from bus 49 (Philo) to bus 66 (Muskngum)
was set to 132 MVA respectively. Figs. 5-7 show the comparisons 7000
of bus MPs for the cases with and without DR bids, for three differ- 6000 4
ent hours (hour 16, 18, and 19). The DR bids for this case were set
to have the same values as in the previous case without network — 5000 \-/ N
constraints. § 4000 4=
Fig. 8 illustrates the price difference at each bus, for hour 19, = o000
between the case without DR (NoDR) and the case with load
response. The load response was modeled as component of the 2000
load that can be scheduled to shut down. The cost of that shut 1000 4
down was modeled as $1 for shutting down 100 MW of load at
0 T T T T T T

any instant. Note that in this case, although the total cost is
reduced, due to the network constraints, LMPs at some buses
may increase. We included the same network limits in this case,
as in previous cases.

From these results, it can be concluded that the DR resources
which are distributed at different load buses, can also have a posi-
tive impact in alleviating the network congestion, as well as the
reduction of the LMPs at different buses. Table A.1 provides hourly
LMP differences between basecase and those cases with DRs.
Table A.2 also shows the cost reduction as a percent of the basecase
results due to the increase in MW of the demand bid.

Conclusion

Demand response (DR) resources are going to play a more
important role in the operation of power systems and electricity
market in the near future. Their participations in the electricity
market are going to have a significant impact on market outcome
by impacting the security-constrained unit commitment and

T T  ; T T T T T T T T  § T T T T T 1
1234567 8 9101112131415161718192021222324
[Hr]

Fig. A.9. Daily load profile.

dispatch results. In this new work, we have attempted to quantify
the economic impact, primarily the production cost and market
price impacts, of modeling and incorporating different types of
DR in a day-ahead electricity market. As a general matter, DR can
have significant drag on electricity prices, as evidenced from the
results. While this phenomenon helps reduce the load payment,
it also has the effect of reduced generator revenue, hence, affecting
the social welfare. In this case, generators (suppliers) portion of
social welfare was reduced, while consumers, representing DR,
portion of social welfare was increased. This outcome would cer-
tainly force us to revisit the question of efficient and fair allocation
mechanism for a system with varying social welfare due to DR
resources.
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Appendix A. System data

The following Table A.3 shows the generator offers, used in the
simulation of the paper. The following load profile representing
24 h load shape, shown in Fig. A.9, was also used in the simulation.
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