
Electrical Power and Energy Systems 62 (2014) 383–390 

 

Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier .com/locate / i jepes

 

Real time probabilistic power system state estimation
http://dx.doi.org/10.1016/j.ijepes.2014.04.046
0142-0615/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Energy & Industry Commission of Kerman Chamber of
Commerce, Industry, Mines & Agriculture, Kerman, 7619653498, Iran. Tel./fax: +98
341 2458394.

E-mail address: morteza_aien@yahoo.com (M. Aien).
Morteza Aien a,b,⇑, Masoud Rashidinejad a,c, Sajjad Kouhi d, Mahmud Fotuhi-Firuzabad e,
Sajjad Najafi Ravadanegh d

a Energy & Industry Commission of Kerman Chamber of Commerce, Industry, Mines & Agriculture, Kerman, Iran
b Energy Department, Graduate University of Advanced Technology, Kerman, Iran
c Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran
d Smart Distribution Grid Research Lab., Electrical Engineering Department, Azarbaijan Shahid Madani University, Tabriz, Iran
e Center of Excellence in Power System Management & Control (CEPSMC), Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran

a r t i c l e i n f o
Article history:
Received 30 June 2013
Received in revised form 20 April 2014
Accepted 22 April 2014

Keywords:
Artificial neural network
Differential evolutionary
Probabilistic optimal power flow
Uncertainty modeling
Wind turbine generator (WTG)
a b s t r a c t

Smartening of contemporaneous power delivery systems in conjunction with the increased penetration
of renewable energies (REs), change the way to energize consumers who are willing to maximize their
utility from energy consumption. However, there is a high degree of uncertainty in the electricity markets
of such systems. Moreover, the unprecedented ascending penetration of distributed energy resources
(DERs) mainly harvesting REs is a direct consequence of environmentally friendly concerns. This type
of energy resources brings about more uncertainties into power system operation resulting in, necessi-
tates probabilistic analysis of the system performance. In the smarter power markets, encountered the
restructuring and deregulation, the online studies of system performance is of huge interest. This paper
proposes a new methodology for real time state estimation, e.g. energy pricing by probabilistic optimal
power flow (P-OPF) studies using the concept of hybrid artificial neural networks (ANN) and differential
evolutionary (DE) method. In order to examine the effectiveness and applicability of the proposed
method, two case studies are conducted and the obtained results are compared against those of Monte
Carlo simulation (MCS) technique. Comparison of the results reveals the impressiveness of the method
regards to both accuracy and execution time criteria.

� 2014 Elsevier Ltd. All rights reserved.
Introduction tice, modern power systems contain intermittent and variable
Uninterrupted variations of the energy consumption together
with the integration of a significant amount of renewable energies
(REs) such as wind and solar into the power networks bring about
crucial operational challenges which stem from their inherent
uncertainties. Real time pricing (RTP) is an effective mechanism
used to manage the smart grids. If real time tariff of electricity is
available in any time interval, consumers can react to this control
signal and manage their energy costs. Optimal power flow (OPF)
computation which can determine energy price at the system nodes,
is one of the major requirements in power system planning and
operation. Bare in mind that in such a highly uncertain and complex
system, a deterministic OPF cannot reveal the state of system accu-
rately; therefore, probabilistic studies are of significant importance.
Deterministic OPF study requires specific values for all input
variables such as loads, generation, and network conditions. In prac-
energy resources like REs and therefore, the OPF uncertainty in such
systems is not a minor subject, moreover, its real time application is
another obligation. Performing P-OPF study helps the system plan-
ning engineers in making judgments concerning new investments
by providing a better sense of future system conditions.

Generally, the term smart grid implies a fully automated electric
power grid, controlling and optimizing operation of all its mutually
connected segments, in order to warrant efficient operations of all
energy generation, transmission and distribution facilities [1,2]. Note
that the smart grids exhibits particular encouraging characteristics,
e.g. demand side management (DSM) [3] and vehicle to grid (V2G)
systems [4,5] among the rest. These capabilities yield notable bene-
fits, e.g. enabling infrastructures for integrating large amounts of REs
and installing distributed generation [6], new energy services and
energy efficiency improvements [7]. Real time pricing of electricity
in presence of different kind of uncertainties is of the major require-
ments for smart grid operation according to which electricity prices
change frequently to represent variations in the cost of energy deliv-
ered [8]. Hence, this work mostly focuses on this issue and attempts
to propose an appropriate technique to resolve this concern.
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Nomenclature

D index of load
G index of generation
Cw weibull scale parameter (m/s)
Kw weibull shape parameter
NG population size of DE
Pi

max maximum allowable limit of active power generated by
unit i (p.u.)

Pi
min minimum allowable limit of active power generated by

unit i (p.u.)
Pi

net net of active power injection at bus i (p.u.)
pD vector of loads active power (p.u.)
PG vector of generators active power (p.u.)
Pr WTG rated power (p.u.)
Pwind vector of wind farms power generation (p.u.)
PWTG WTG output power (p.u.)
QD vector of load reactive power (p.u.)
QG vector of generators reactive power (p.u.)
Qwind vector of wind farms reactive power consumption/

generation (p.u.)
Qi

max maximum allowable limit of reactive power generation
by unit i (p.u.)

Qi
min minimum allowable limit of reactive power generation

by unit i (p.u.)

Qi
net net of reactive power injection at bus i (p.u.)

Sij the line power flow between buses i and j (p.u.)
Sij

max maximum allowable limit of line power flow between
buses i, j (p.u.)

TC total operation cost of the power system ($)
v wind speed (m/s)
V vector of bus voltage magnitude (p.u.)
Vi

max maximum allowable limit of voltage at bus i (p.u.)
Vi

min minimum allowable limit of voltage at bus i (p.u.)
vi wind turbine cut- in speed (m/s)
vo wind turbine cut- out speed (m/s)
vr wind turbine rated speed (m/s)
X vector of uncertain input variables
Xbest,g best individual at generation g of DE
Xi,g the ith individual at generation g of DE
Xr,g random individual at generation g of DE
Yij admittance between buses i, j (p.u.)
Y vector of uncertain output variables
l mean value of normal distribution
r standard deviation of normal distribution
d vector of bus voltage angles (rad)
di voltage angle at bus i (rad)
hij angle of Yij (rad)
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Beginning with the uncertainty, to comprehend the engineering
system uncertainties, probabilistic approaches have been used
since the early seventies [9,10]. As yet, many probabilistic methods
have been developed to study the uncertainty associated with engi-
neering systems. These methods generally can be classified into
two categories: simulation and analytical methods. Monte Carlo
simulation (MCS) is the widely used simulation method. MCS pro-
vides more accurate results but its execution might be extremely
time-demanding, which degrades its appeal in real time applica-
tions. In order to reduce the computational burden, analytical
methods were proposed. The summary of the reviewed literature
is as follows. The problem of economic dispatch was considered
as a probabilistic problem in [11], where the authors used Gram–
Charlier series to represent the probability density function (PDF)
of the system uncertain loads. Based on the same Gram–Charlier
series technique, a more general approach to account the uncer-
tainties associated with all OPF variables was proposed in [12].
The first-order second-moment method (FOSMM) is found on the
basis of the first order Taylor series expansion [12]. The fuzzy the-
ory was used in [13] to consider the load uncertainty in the OPF
problem. The MCS method was used in [14] to analyze the OPF
under the uncertainty in the forecasted load. In [15,16], the authors
developed a new approach in probabilistic studies based on the
point estimation method (PEM). The two point estimation method
(2PEM) was proposed to P-OPF study in [17], which can obtain the
results with an acceptable level of accuracy.

The main advantage of the analytical methods mentioned above
is to avoid the cumbersome computer simulations. In contrast,
these techniques impose more assumptions and complex mathe-
matical algorithms [18].

For some analytical methods such as 2PEM, the execution time is
either proportional or exponential with respect to the number of
uncertain variables. This can diminish the superiority of these meth-
ods against simulation ones when the system dimensions become
larger and larger. So, their usage in real time applications is imprac-
tical in these systems. None of the currently used methods can gen-
eralize its solutions to new conditions. This indicates that under any
new conditions, the problem must be solved again resulting in a very
time consuming procedure. To overcome such disadvantages, new
analytical methods for probabilistic nonlinear systems are exceed-
ingly necessary, which must have the following properties:

1. An acceptable level of accuracy.
2. Reasonable execution time which is not strongly depen-

dent on the number of uncertain variables.
3. Easy to implement.
4. Capable of adaptation with the new conditions.
5. Applicable to real time applications.

These requirements can be achieved using the methods based
on intelligence system such as the artificial neural networks
(ANN) that essentially simulate the human brain behavior. ANN
has been frequently used in recent years in different power system
applications such as load forecasting [19,20], electricity price fore-
casting [21], wind speed forecasting [22], and state estimation in
distribution system [23]. Note that the state estimation under
the uncertainty in distribution systems may be more difficult
because of their radial architecture, less observability, and low bulk
effect, especially at the LV level.

However, based on the authors’ best knowledge, there is no
reported work about online P-OPF studies using the ANN and this
illustrates the novelty of this work. The main contribution of this
paper is to develop a new approach for real time energy pricing
by performing online P-OPF studies using the concept of ANN.
The proposed method can overcome drawbacks associated with
the currently used probabilistic methods, from the simulation to
the analytical approaches, and opens a new horizon in this context.
The developed approach is online, has the adaptation capability
and a high degree of accuracy, which will be shown in the follow-
ing. At commence, the proposed method is introduced; thereafter,
it is implemented in the online power system P-OPF study taking
into account the uncertainties associated with the forecasted load
and wind power generation. In the following, the proposed method
is applied to a 6-bus and 30-bus test systems and then, the
obtained results are compared with the MCS results with regards
to both accuracy and execution time.
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The rest of the paper is organized as follows. Section ‘Optimal
power flow problem’ introduces the OPF, the P-OPF formulation,
and some P-OPF methods. Section ‘Uncertainty in OPF problem’
discusses about the uncertainties associated with the OPF problem
and their modeling. In Section ‘Artificial neural network (ANN)’, an
introduction to ANN is presented; then, the proposed model is
described and implemented to the P-OPF study. Section ‘Case stud-
ies and discussion’ describes the case studies; afterwards, the
obtained results pertained to each case study are presented. The
conclusion is drawn in Section ‘Conclusion’.

Optimal power flow problem

Fundamentally, OPF is an optimization problem, generally oper-
ation cost minimization [24], which will be the objective function
of this paper as well.

Optimal power flow formulation

Mathematically, the OPF problem can be formulated as the
following constrained nonlinear optimization problem.

Min: TCðx;uÞ
subject to gðx;uÞ ¼ 0

f ðx;uÞ 6 0 ð1Þ

The objective function TC(x, u) is a scalar function. There are two
types of variables in this optimization problem, state and control
variables. x is a set of state variables (V, d) and u is a set of control
variables (e.g. PG, QG) [24]. The set of constraints can be divided
into two categories of equality and inequality constraints. The
equality constraints are power balance equations at each bus.

Pi
net ¼

X
G

PG
i �

X
D

PD
i ð2Þ

Q i
net ¼

X
G

Q G
i �

X
D

Q D
i ð3Þ

Pi
net ¼ Vij j

XNb

j¼1

YijjjVj

�� �� cosðdi � dj � hijÞ ð4Þ

Q i
net ¼ Vij j

XNb

j¼1

YijjjVj

�� �� sinðdi � dj � hijÞ ð5Þ

The inequality constraints include the upper and lower limits
for bus voltages, active and reactive power generation of each unit,
and transmission lines flows expressed as (6)–(9):

Vi
min

��� ��� 6 Vi
��� ��� 6 Vi

max

��� ��� ð6Þ

Pi
min 6 Pi

6 Pi
max ð7Þ

Q i
min 6 Q i

6 Q i
max ð8Þ

Sij
��� ��� 6 Sij

max ð9Þ

 

 

Probabilistic optimal power flow formulation

Power systems are inherently uncertain systems. Hence, in the
P-OPF study, it is aimed to determine the state of the system as a
function of uncertain input variables which can be stated as:

Y ¼ f ðXÞ ð10Þ
Input vector X is written as:

X ¼ PD Q D PDER Q DER . . .½ �T ð11Þ

The input vector contains the load, the network conditions, the
states of generating units and the power generated by the distrib-
uted energy resources (DERs) such as wind farms and solar farms
among the rest. The output vector Y is stated as:

Y ¼ VdPG Q G ...½ �T ð12Þ

The uncertainty associated with input variables, influences the
system state variables (e.g. V, d) as well as the system control vari-
ables (e.g. PG, QG). Whereas, the output variables are related to
both uncertain state and control variables, they also have their
specific uncertainties.

Probabilistic methods

Probabilistic analysis of power system performance was first
proposed in the early seventies [9]. So far, many probabilistic tech-
niques have been developed which can be categorized into two
main groups: Simulation methods like MCS and Analytical
methods such as 2PEM.

Simulation methods are techniques that involve using random
numbers and probability in order to solve the problems having
uncertainties in their parameters. These methods suffer from the
cumbersome computational burden. Analytical methods were pro-
posed to avoid the cumbersome computational burden associated
with simulation approaches by decreasing the number of problem
evaluations but some simplifications and more complex algo-
rithms are necessary. Interested readers are referred to [25], in
which more explanations about these methods are provided.
Uncertainty in OPF problem

As discussed earlier, the uncertainty associated with power
system parameters is not a negligible issue. This section briefly
introduces some of the power system uncertain parameters and
their modeling.

Uncertain parameters

The power industry deregulation and privatization cause that
more and more uncertainties emerge in the system operation.
OPF is often recognized as a deterministic optimization problem
with fixed model parameters and input variables. However, many
random disturbances or uncertain factors exist within the power
system operation. These uncertainties impose errors in the OPF
solutions when deterministic data is used; therefore, probabilistic
analysis must be performed. Though, power systems are faced with
variety of uncertainties, we mostly focus on uncertainties associ-
ated with the load, and wind power generation.

Uncertainty modeling

One of the most conspicuous and ubiquitous power system
uncertainties stem from the load level ambiguity. It fluctuates as
a function of time, weather conditions, and electricity price among
the rest. Generally, load forecast is assumed to be normally distrib-
uted with forecasted load as the mean l and the standard devia-
tion (STD) equals to a fraction of the mean [26].

In order to model the wind power generation uncertainty, some
buses are assumed to have integrated wind farms with uncertain
output powers as a result of wind speed uncertainty. Wind speed
varies both in time and location and its PDF is claimed to be
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weibull in the respected literature [27]. The WTG’s output power
uncertainty modeling is summarized as follow:

Step 1: Wind speed is modeled by an appropriate PDF such as
weibull which is represented by (13).

f ðvÞ ¼ Kw

Cw

v
Cw

� �Kw�1

exp � v
Cw

� �Kw
 !" #

ð13Þ

Step 2: In order to assess the uncertainties of a given problem,
the problem must be evaluated several times with different combi-
nation of inputs to cover at least the most important or probable
conditions. To model the uncertainty associated with the WTG’s
output power, the desired wind speed samples are generated in
each evaluation by an appropriate manner.

Step 3: The generated wind speed samples can be transformed
to wind turbine output power using the wind speed-power curve
through (15).

PWTG ¼ 0 if v 6 v i or v P vo

PWTG ¼ Pr
v � v i

v r � v i
if v i < v < v r ð14Þ

PWTG ¼ Pr if v r 6 v < vo

Step 4: One of the frequently used approaches to model the
wind farms in steady-state power system studies is to assume their
generations as negative loads with constant power factors [28].
Hence, the wind farm output powers are modeled here as negative
uncertain loads in the corresponding bus (here, it is assumed that
the wind farm power factor is kept at 0.85 lag).

Artificial neural network (ANN)

The application of intelligence systems may be an encouraging
alternative to remove some drawbacks associated with currently
used probabilistic methods.

Introduction to ANN and its architecture

Artificial neural network (ANN) as a computer data processing
system simulates the performance of human brain, which is com-
prised of billions of interconnected cells named neurons [19]. Gen-
erally, the ANN architecture can be divided into three parts: input
layer, hidden layers, and the output layer. It is claimed that the
multi-layer perceptron (MLP) network is capable to numerically
approximate any continuous function to the desired accuracy
[29]. The architecture of the suggested ANN has MLP structure
with Levenberg–Marquardt (LM) learning algorithm. LM training
algorithm is one of the most efficient learning mechanisms for
the prediction purpose [30]. The LM method trains an ANN 10–
100 times faster than the gradient descent back propagation
(GDBP) algorithm [31]. Mathematical details of the LM algorithm
are presented in [21]. In [32], Kolmogorov’s theorem proves that
a problem can be solved with MLP having one hidden layer. So,
in this work, an ANN architecture based on MLP with a hidden
layer is used.

Differential evolution optimization technique

Differential evaluation (DE) is a heuristic population-based
search algorithm for optimization problems [33]. The initial popu-
lation of DE is randomly generated in the solution space, and then
evaluated. Afterwards, three parents are chosen and they generate
a single offspring which creates next generation candidate. Each
candidate of generation is called individual. DE generates a single
offspring (instead of two as the genetic algorithm) by adding the

 

 

weighted difference vector between two parents to a third parent.
Formally, the evolution of the proposed DE from a generation to
the next generation is based on the following relation:

Xi;gþ1 ¼ Xbest;g þ R� ðXr1;g þ Xr2;gÞ; i ¼ 1 : NG ð15Þ

where R is the control parameter proposed by Storn and Price which
controls the amplification of the differential variation [33]. In order
to widely search the solution space in various directions, control
parameter is selected randomly on the range of [0,1].

Combination of the ANN and DE

In order to improve the learning procedure of the ANN in
extracting input/output mapping function, ANN is combined with
a stochastic search technique (i.e. DE). Although LM is computa-
tionally efficient learning algorithm, it searches the solution space
in a specific direction (such as steepest descent) and thus, this
learning algorithm may be trapped in a local minimum [34]. When
ANN is trapped in local minimum during training phase, DE is used
to solve the problem. Training ANN without LM and just with DE is
a time demanded process and has the problem of convergence.
Therefore, DE continues the training phase of ANN by modeling
this process as an optimization problem. For this purpose, ANN is
trained first by the LM learning algorithm. Then, the obtained
weights and bias values are transferred to the DE which can widely
search the solution space in various directions with its enhanced
exploration capability. Consequently, the DE tries to further mini-
mize the validation error of ANN after LM learning algorithm. The
objective function of the DE is to minimize the error of the ANN. In
order to convey the knowledge of the LM learning algorithm to the
DE, one of the individuals is initially set to the obtained weight and
bias of the LM, and the other individuals of the initial population
are chosen randomly. After the initialization phase, individuals of
the DE move and search the solution space iteratively, until the
stopping criterion of the DE is met. Here, if the difference between
performances of two iterations does not violate predefined thresh-
old in five successive iterations, the search process is terminated.
Then, the components of the best individual of the DE (weight
and bias vectors) are returned to the ANN, which are considered
as the final weights of ANN. At this point, the training process of
ANN is completed.

Application of ANN based online P-OPF

Nowadays, online state estimation of power systems is an
essential need for both system study and management. The load,
as a highly uncertain parameter, changes ceaselessly; moreover,
all uncertain parameters have different values in different time
periods. This paper proposes a real time probabilistic power sys-
tem state estimation based on machine learning algorithm. Fig. 1
shows a typical daily mean load curve. As a well-known fact,
power system load faces with uncertainty. For the load uncertainty
modeling, the frequently used practice is to describe the load
uncertainty with a normal distribution function whose parameters
are obtained based on the historical data [26]. Here, the loads are
modeled through normal distribution functions with mean values
equal to the base loads, and standard deviations (STDs) equal to
a specific percentage of the mean values [35]. Hereby, it is assumed
that the load is normally distributed with mean values the same as
depicted in Fig. 1 and the STD equal to a fraction of the mean val-
ues during day hours. Generally, an ANN needs a sufficient set of
historical data as its training data to map the relationship between
input and output variables and then can transform every input var-
iable to the corresponding output variable. If there is sufficient his-
torical data about uncertain variables, the proposed network can



Fig. 1. A typical daily mean load curve.
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be trained to be used in real time applications. Otherwise, for each
time of day, the train data sets are obtained from probabilistic
studies of each time period, in which the mean values of the load
are fixed and the STD values of load and the wind speed parame-
ters change in the predefined area. Then, the trained network can
obtain true results for any new condition of input parameters in
the trained zone. By this way, the training is executed once for a
specific period and then, it can be applied during that period as
an online system study tool. It must be recognized that the sug-
gested method can be used in other applications such as online
probabilistic load flow (PLF) studies, too. The flowchart of proposed
method is presented in Fig. 2.
Historical Data

Data Processor

Learning ANN with LM training 
algorithm

Transferring Weights and Biases to DE

Best Training Weights and Biases to DE

Returning Weights and Biases to ANN

Online State Estimation

Predicted values

Fig. 2. Flowchart of proposed method.
Case studies and discussion

To justify the effectiveness of the proposed method, two case
studies, a 6-bus and a 30-bus test system, are conducted. The pro-
posed method was implemented on a Dell Inspiron 1420 system
with a 2-GHz processor and 2-GB of RAM using MATLAB optimiza-
tion toolbox [36]. All of the codes were written in MATLAB
environment.
The wood and woollenberg 6-bus system

This system has 6 buses, 3 generation units and 11 transmission
lines with the base power and base voltage equal to 100 MVA and
230 kV, respectively. More technical data about this network can
be found in [37].

As noted earlier, the load pattern may change as a result of sev-
eral reasons such as political issues, industrialization, customer’s
income, and climate change among the rest. The production of
REs such as wind and solar energies may be altered as a direct con-
sequence of climate change. As a simple instance, the wind or solar
energy potentials may change because of climate changes in a
specific geographic region. In all of these cases, the probabilistic
studies must be carried out again which may be a cumbersome
procedure and as such inappropriate for an online application. A
solution to avoid this requirement is of significant interest. Hence,
in this paper, an ANN approach is suggested for this situation.

Assume that this case study has a wind farm installed at bus 4
whose data is given in Table 1. The detailed technical data about
used wind turbines is taken from [38] (turbine type: N100 and
capacity of 2.5 MW). The maximum load of system is assumed to
be 240 MW. As shown in Fig. 1, this system has mean value of load
of 210 MW in hour 13.

In the conventional P-OPF study, the goal is to assess the uncer-
tainties associated with output variables with the condition that
the value of load STD is fixed at e.g. ±5% of the mean value and
the wind speed data is fixed as those given in Table 1. In this paper,
the purpose is to go beyond this point. In other words, it aims to
interrogate on the uncertainties of output variables as functions
of the degree of input variables uncertainty, e.g. the STD of load
and the wind speed data parameters. If there are some solutions
about the uncertainty of output variables as function of uncertain
input variables, an ANN can be trained to obtain the uncertainty
of these variables in another new condition. There is an inherent
characteristic that the ANN cannot obtain the results out of range
that it is trained since the ANN has the capability of accurate inter-
polation not the extrapolation. As the 6-bus system is a small-scale
system, in order to demonstrate the effectiveness of the suggested
method, a wide range of variations are chosen and the ANN is
trained in that range. To this end, the STD of load is varied between
0% and 25% of the base load, the wind speed weibull shape and
scale parameters are changed between the values 8, 0 and 3, 0,
respectively.

As previously mentioned, the train data may be obtained from
historical data or may be obtained from the simulation of the net-
work with its uncertainty by the probabilistic methods such as
MCS, 2PEM, Unscented Transformation (UT) and so forth [9]. At
best, all required data to train the ANN are available as historical
Table 1
Wind farm information – case 1.

Parameter Value

No. of WTGs 8
Cw (m/sec) 8
Kw 3



Fig. 3. The trend of error function in each train epoch- case 1 at hour 13.
Fig. 4. Predicted and desired values for generation mean value at bus 1- hour 13.

Fig. 5. Predicted and desired curves of STD values for LMP at bus 4- hour 13.

Fig. 6. Predicted and desired curves of mean values for LMP at bus 4- hour 13.
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data. At worst, the train data must be obtained by simulation.
However, all simulations may be done once and are used forever
as historical data. If the area that the network can perform well
is to be extended, one can add additional data to the past data
set. This means that the train area is extensible. In this paper, about
15% of the train data is considered as test data to evaluate the
method performance. Although the method is general and can han-
dle every number of inputs and outputs without any limitation, in
this case, the generation at bus 1 and LMP at bus 4 are chosen as
the output variables. In this case study, the load STD, wind speed
weibull shape and scale parameters are considered as the input
variables. Maximum iteration of DE is 100, and stopping criterion
of DE is assumed to be 0.001. This means that if the difference
between training errors of two iterations is less than 0.001 in five
successive iterations, the training procedure is finished. Fig. 3 por-
trays the trend of error function through the DE. The horizontal and
vertical axes of Fig. 3 show training epochs and training error in
terms of mean squared error (MSE), respectively. As can be seen
from Fig. 3, the DE has reduced training error from 0.6 to 0.45. This
confirms that the performance of ANN has been improved about
25% using DE.

Fig. 4 portrays the results of feeding the test data to the trained
network to examine the performance of the network. The curves
are real values (solid blue1 line), predicted values without DE
(dashed red line), and predicted values using DE (dotted green line)
for the generation at bus 1. This figure shows that how the genera-
tion at bus 1 varies as function of input variables uncertainties. As
can be seen from Fig. 4, it is clear that the proposed method performs
well in the P-OPF studies and it can obtain the desired results with a
high degree of accuracy. Furthermore, predicted curve accurately fol-
lows the desired trend using DE. In Fig. 4, mean absolute percentage
error (MAPE) without and with using DE are 1.6% and 0.41%, respec-
tively. In order to compare proposed method with another optimiza-
tion algorithm, combination of the ANN and PSO has been tested.
Prediction error of the generation at bus 1 with PSO is 0.68%.

It must be noted that the LMPs are of the most volatile param-
eters of the system. So, the results for mean and STD values of LMP
at bus 4 in which the wind farm is located are presented in Figs. 5
and 6.

Table 2 compares the run time of the proposed method, the
2PEM, and a 3000 samples MCS approach to obtain the solution
1 For interpretation of color in Fig. 4, the reader is referred to the web version of
this article.
of P-OPF problem for this case study. From Table 2, it can be seen
that the proposed method can greatly reduce the computational
burden of the problem. The training phase is the most time



Table 2
Run time and accuracy comparison – first case study.

Method Run time (s) MAPEMean (%) MAPESTD (%)

MCS 1914 0 0
2PEM 5.16 1.6855 3.687
Trained ANN 0.08 0.3564 4.8668
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consuming part of the method which is an off-line procedure.
Observe that the proposed method has really an interesting perfor-
mance and can be utilized in real time applications such as LMP
forecasting. It takes advantage of historical data or simulations
done in the past to face with the new conditions.

The IEEE 30-bus test system

This system has 30 buses, 41 transmission lines and 6 genera-
tion units. More technical data about this network can be found
in [37]. This system is also assumed to have a wind farm at bus 8
whose technical data is the same as first case study. The system
maximum load is assumed to be equal to 189.2 MW in hour 19.
For the suggested ANN, the network configuration and DE
Fig. 8. Predicted and desired curves of STD values of LMP at bus 23- hour 19.

Fig. 7. Predicted and desired curves of mean values of LMP at bus 23- hour 19.
parameters are the same as before. In this case study, the mean
and STD value of LMP at bus 23 and the mean and STD value of
losses are considered as output variables.

Figs. 7 and 8 compare the predicted and actual values for the
mean and STD value of LMP at bus 23, respectively. The mean
and STD value of losses are shown in Figs. 9 and 10, respectively.
From the results, it is clear that the proposed method can be used
in the P-OPF studies, confidently. Table 3 compares the run time of
the proposed method, the 2PEM, and a 3000 samples MCS
approach to obtain the solution of P-OPF for this case study. What
makes the results particularly interesting is that the run time of the
proposed method is not dependent on the number of uncertain
variables. Using the trained network for this case study, one can
obtain the solution of P-OPF in 0.11 s using the proposed method,
Table 3
Run time and accuracy comparison – case 2.

Method Run time (s) MAPEMean (%) MAPESTD (%)

MCS 21.59e3 0 0
2PEM 367 5.8692 14.2
Trained ANN 0.11 0.2455 3.5006

Fig. 9. Predicted and desired curves of mean values for losses- case 2 at hour 19.

Fig. 10. Predicted and desired curves of STD values for losses- case 2 at hour 19.
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whereas this time is 21,590 s using the MCS with 3000 samples
and 367 s if the 2PEM is used. This supremacy is more sensible
as the system dimension enlarges. Along with the number of
uncertain variables increases, both the time efficiency and accu-
racy of 2PEM results decreases more and more [17] but this matter
does not hold for the proposed method. On the other hand, the pro-
posed approach actualizes the online power system studies such as
online P-OPF.

Conclusion

With legislative and regulatory mandates in modern restruc-
tured power systems especially the smart grids, the uncertainty
of power grid intensifies more and more. On one hand, the proba-
bilistic studies of system performance are necessary due to differ-
ent uncertainties imposed to these systems. On the other hand, the
online probabilistic studies of the system performance are of huge
interest for real time applications such as smart grids operation
and control. In this paper, a neural network based approach for real
time probabilistic studies such as P-OPF is proposed. One of its
applications is the real time pricing of energy in the smart grids.
The presented method was examined using two case studies and
the obtained results were compared with those of MCS and
2PEM. The proposed method performed well in both case studies
from the view point of accuracy and execution time criteria. The
proposed method can obtain the results of P-OPF studies in a frac-
tion of a second with a high degree of accuracy while the run times
of MCS and even the 2PEM are extremely greater. The generaliza-
tion ability is the salient supremacy of the method that ennobles it
rather than other currently used methods from simulation meth-
ods to analytical ones.
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