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Abstract—Renewable energy sources such as wind and solar
have received much attention in recent years, and large amounts
of renewable generation are being integrated into electricity net-
works. A fundamental challenge in power system operation is
to handle the intermittent nature of renewable generation. In
this paper, we present a stochastic programming approach to
solve a multiperiod optimal power flow problem under renew-
able generation uncertainty. The proposed approach consists of
two stages. In the first stage, operating points of the conventional
power plants are determined. The second stage realizes genera-
tion from the renewable resources and optimally accommodates
it by relying on the demand-side flexibilities. The proposed model
is illustrated on a 4-bus and a 39-bus system. Numerical results
show that substantial benefits in terms of redispatch costs can be
achieved with the help of demand side flexibilities. The proposed
approach is tested on the standard IEEE test networks of up
to 300 buses and for a wide variety of scenarios for renewable
generation.

Index Terms—Demand response, optimal power flow, power
system modeling, linear stochastic programming, smart grids,
uncertainty modeling, wind energy.

NOMENCLATURE

Sets

B Buses, indexed by b.
L Lines (edges), indexed by l.
G Generators, indexed by g.
W Renewable generators, indexed by w.
D Loads, indexed by d.
D0 Flexible loads, D0 ⊆ D .
Bl Buses connected by line l.
Lb Lines connected to bus b.
Gb Generators located at bus b.
Db Loads located at bus b.
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S Scenarios, indexed by s.
T Discrete set of time intervals, indexed by t.
T F

d Flexibility windows for demand d, T F
d ⊂ T × T .

Parameters

bl Susceptance of line l.
τl Off-nominal tap ratio of line l.
PG−

g , PG+
g Min., max. real power outputs of conven-

tional generator g.
PD

d,t Real power demand of load d.
fg,t(pG

g,t) Cost function for generator g.
PW

w,t Initial forecast for real power genera-
tion availability from generator w in time
period t.

�PW
w,s,t Change in generation availability under

scenario s from generator w in time
period t.

λw,s Probability of scenario s.

CW
w,t Cost of renewable generation spillage.

F−
d,t, F+

d,t Min., max. load flexibility of demand at
bus d.

�P−
g,t,�P+

g,t Min., max. change in operating point of
generator g during time period [t, t + 1].

R−
g,t, R+

g,t Min., max. regulation of generator g.

CR−
g,t , CR+

g,t Downward, upward regulation cost for
generator g.

CD−
d,t , CD+

d,t Cost of decreasing, increasing demand in
the time period t.

Pmax
l Max power flow capacity of line l.

Variables

pG
g,t Real power output of generator g.

�pG
g,s,t Second stage recourse variable for real

power output of generator g.
�pG+

g,s,t, �pG-
g,s,t Upward, downward regulation variables

for real power output of generator g.
pW

w,s,t Real power output of renewable genera-
tor w.

θb,s,t Voltage phase angle at bus b.
pL

l,s,t Real power injection at bus b into line l
(which connects buses b and b′).

pD
d,s,t Real power delivered at bus d.
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αd,s,t Proportion of load delivered at bus d.
α+

d,s,t, α−
d,s,t Variables for increase, decrease in demand

supply at bus d.

Acronyms

(M)OPF (Multiperiod) optimal power flow.
(S)UC (Stochastic) unit commitment.
RES Renewable energy sources.
TSO Transmission system operator.
DSO Distribution system operator.
LMP Locational marginal price.
ILC Interpretable load control.
DR Demand response.

I. INTRODUCTION

ELECTRICITY networks around the world are experienc-
ing extensive changes both in operations and infrastruc-

ture. These changes are primarily driven by the liberalization
of electricity markets and our increased focus on eco-friendly
generation. Large-scale renewable energy sources (RES) are
encouraged by different incentive schemes to meet government
policy goals on climate related issues. Managing and operating
a power system with considerable penetration of RES is a chal-
lenge and many countries are investing substantial resources
in planning and expanding current infrastructure to cope with
RES integration. Wind power generation is the most widely
used source of renewable energy and it has been integrated
into many power systems around the world [1], [2], while
solar power is catching up at a rapid pace.

The non-dispatchable nature of wind power introduces
additional costs stemming from the management of intermit-
tency [3], [4]. Extra reserves are required-at an additional
cost-to hedge against the uncertainty from the partly pre-
dictable wind power generation. Despite the advancements in
forecasting methodologies and tools, the hour-ahead forecast
errors for a single wind farm may be on average as high as
10%-15% of its expected output [5]. The effects of these fore-
cast errors are expected to become more pronounced in future
as the share of RES increases in power networks.

In contrast, the demand at a transmission level has a large
base component that can be predicted accurately. In power
systems optimization problems, electricity demands are typi-
cally modeled as inelastic. In reality a substantial amount of
the electricity demands are elastic [6]. Electric demands such
as plug-in electric vehicle (PEV) charging, district heating
and heating ventilation and air conditioning (HVAC) systems
are elastic demands that constitute a considerable percent-
age of the total demand, e.g., more than one third of the
U.S. residential demand is flexible [7]. The majority of these
demands are deferrable meaning that part of a demand can be
shifted in time while respecting the deadlines and ramp-rate
constraints [6].

Demand response (DR) is a way to utilize electricity
demand as a resource to increase efficiency and reliability of
an electricity network [8]. Demand response is an active area
of research and there is a vast amount of prior work in this
domain (e.g., see [9] and references therein). Demand response

is generally characterized as price-based DR and incentive-
based DR [10]. Demand response programs are generally
managed by the distribution companies (DSO) or entities other
than the transmission system operator (TSO). Most if not all of
the current literature focusses on price-based DR while mod-
eling transmission level optimization problems [9], [11]–[14].
The practicality and benefits of such optimization models
incorporating price-based DR are not very clear, especially
in view of reliability and volatility of power systems [15]. In
this paper we revisit the multi-period optimal power flow prob-
lem and propose a two-stage stochastic model that incorporates
demand as a flexible asset, the uncertainties in generation from
the RES and consideration of an objective of total cost of gen-
eration minimization. The following two subsections give an
overview of the relevant literature and contributions of this
paper, respectively.

A. Literature Review

Traditional formulations of the OPF problem have been
extended to account for the variable and partly-predictable
nature of wind power generation [3], [16]–[18]. These papers
capture the intermittent nature of wind power generation using
different probabilistic techniques and determine a robust oper-
ating point of conventional generating units to meet a constant
demand. With stronger focus on the demand side, authors
in [19] consider demand-side participation as well as uncer-
tainty in the demand bids. An optimal bidding strategy for
an aluminium smelter in the day-ahead markets is devel-
oped in [20]. The market prices for day-ahead are treated as
stochastic variables and the proposed model determines the
optimal spinning reserve provision as well as the power con-
sumption of an aluminium smelter. Authors in [21] extended
the optimal power flow problem to a two-stage stochastic
optimization problem: the first stage of the problem is to
find a steady-state operating point for the large generation
units while the second stage of the problem is to schedule
more expensive fast-response generation units. The uncer-
tainty in renewable generation is captured by using a set of
scenarios; demand is assumed to be deterministic and the
problem is not time coupled. This means that the optimal oper-
ating point is independent of the temporal characteristics of
the system.

A stochastic unit commitment model is presented in [22]
in which authors investigate the impact of large-scale wind
power integration into a power system. The uncertainty in
the wind generation is addressed by means of scenarios and
demands are considered to be fixed. Recently, a flexible
approach is presented in [23], where the authors present a
stochastic optimization framework for day-ahead operation of
a electricity network. Their model includes unit-commitment,
(N-1)-security constraints and a model of electricity storage.
Flexible demands are modeled as dispatchable loads, which
means that a demand can be shed at a price.

Much of the relevant work in this area focuses on either
modeling of the uncertainty in renewable generation or mod-
eling of the demand response. To the best of our knowledge,
there are very few papers which deal with both of these aspects
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Fig. 1. Flexibility in an aggregated demand. Total demand should be
conserved in the time windows [t1, t2] and [t3, t4].

in a generic framework. Authors in [23] and [24] have also
alluded to the sparse literature on the problem.

B. Contributions of This Paper

We present an optimization model that considers the flex-
ibility offered in demand bids from the DSOs and optimally
utilizes this flexibility by minimizing the total cost of gener-
ation. We propose that the DSOs embedded within a trans-
mission network provide inelastic demand bids along with
a flexibility interval; this means that the demand bids are
elastic to a certain level. Such flexibility can be achieved
by a DSO’s own DR programs. Fig. 1 shows a possi-
ble scenario of such a flexibility on an aggregated demand
from a single DSO. If such information is available to a
TSO then the decision problem is to optimally utilize the
generation from RES while utilizing the flexibilities of the
demands.

The main contributions of this paper are twofold:
• a revisited multi-period OPF formulation with integrated

demand response and renewable generation uncertainty;
• a rigorous mathematical model of demand response.
In contrast to recent approaches, we give a complete math-

ematical model of the demand response and also formulate
the constraints for considering the demand shift and the con-
servation of demand for a given time period. In spite of its
generality, the proposed model is computationally efficient and
the approach holds promise. The proposed approach can also
be used as a tool to project future LMPs given the demand
side flexibilities. The projected prices are useful information
for the distribution companies, and they can use this infor-
mation to plan their demand response strategies [10]. Finally
we provide the wind scenarios and the network data of all
the numerical results presented in this paper in an online
archive at [25].

The remaining sections of this paper are outlined as follows.
Section II gives the formulation of the problem. Numerical
results are given in Section III and the conclusions are given
in Section IV.

II. PROBLEM FORMULATION

In this paper, a two-stage stochastic formulation is pre-
sented in a deterministic equivalent form [26]. In the first stage,
decisions are made about the dispatch from the conventional
generators. The second stage realizes the generation from the
RES. Any resulting supply-demand mismatch is alleviated by
the DR and slight adjustments of the operating points of the
conventional generators. We assume that the DSOs can bid
demand along with the flexibility for each time interval in
a given time horizon. The transmission system operator can
either meet the demand or can use the flexibility (by paying
a price) to accommodate the uncertainty from the RES.

Consider a power network with the set of buses B. Let W
denote the set of renewable generators in the network. Since
the real power generation from the renewable generators is
uncertain, let S be the set of real power generation scenarios
of these generators. Let G be the set of conventional power
plants and T := {1, 2, · · · , T} be the set of given time hori-
zon. In the following, we give the constraints and objective
function of our two stage stochastic multiperiod OPF problem.

A. Power Flow

Let pG
g,t be the real power generation from the conventional

generator g in the time interval t. The power balance equations
are given as, ∀b ∈ B, s ∈ S , t ∈ T :

∑

g∈Gb

(
pG

g,t + �pG
g,s,t

)
+

∑

w∈Wb

pW
w,s,t =

∑

d∈Db

pD
d,s,t +

∑

l∈Lb

pL
l,s,t

(1)

where pW
w,s,t denotes the real power output taken from the

renewable generator w, pD
d,s,t denotes the real power deliv-

ered to the demand d and pL
l,s,t is the flow of real power in

the line l in the time period t in the case when scenario s is
realized, respectively. The power flow equations are given as,
∀l ∈ L , s ∈ S , t ∈ T :

pL
l,s,t = −bl

τl

(
θb,s,t − θb′,s,t

)
(2)

where b and b′ are the two ends of the line l. Voltage angles
at the two ends of the line l = (b, b′) are denoted by θb,s,t

and θb′,s,t, respectively. We consider the DC model of power
flow [27]. This model ignores the line losses and the reactive
power in a network. We have made this assumption in order
to keep the formulation linear. The second stage recourse vari-
ables �pG

g,s,t in (1) are modeled in terms of the upward and
the downward regulation variables as follows:

�pG
g,s,t = �pG+

g,s,t − �pG-
g,s,t (3a)

0 ≤ �pG+
g,s,t ≤ R+

g,t (3b)

0 ≤ �pG-
g,s,t ≤ R−

g,t (3c)

where R+
g,t, R−

g,t are the permissible upward and down-
ward regulation of the generator g in the time period t,
respectively.
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B. Demand Model

Let D denote the set of real power demands and we
assume that a distribution network is attached to each bus
d ∈ D . Demand at the distribution network is aggregated and
is denoted by PD

d,t. We assume that each distribution com-
pany at the demand bus d knows about the flexibility of their
demand during the time interval t. This flexibility can either
come from a distribution company’s direct control over some
demands or from its DR programs.

Let αd,s,t be proportion of the load delivered at bus d at the
time period t for the scenario s. Let [F−

d,t, F+
d,t] be the flexibility

interval of the demand at bus d and at the time period t. The
flexibility interval is defined around αd,s,t = 1 and therefore
we have 0 ≤ F−

d,t ≤ 1 and F+
d,t ≥ 1. If the demand at bus d

is not flexible then F−
d,t = F+

d,t = 1 are used. If the demand at
bus d is flexible then it is placed in the set D0 ⊆ D .

The demand model is given by the following set of con-
straints:

pD
d,s,t = αd,s,tP

D
d,t (4a)

0 ≤ F−
d,t ≤ αd,s,t ≤ F+

d,t (4b)

αd,s,t = 1,∀d ∈ D \ D0 (4c)

where (1 − F−
d,t) and (F+

d,t − 1) are proportions of the demand
d which can be decreased or increased in the time interval t,
respectively.

1) Cost of the Demand Response: We introduce two pos-
itive continuous variables α+

d,s,t, α−
d,s,t that give the p.u.

increase and decrease in the amount of real power delivered to
the demand bus d, respectively. These variables are modeled
linearly as:

αd,s,t = 1 + �αd,s,t (5a)

�αd,s,t = α+
d,s,t − α−

d,s,t (5b)

0 ≤ α+
d,s,t ≤ F+

d,t − 1 (5c)

0 ≤ α−
d,s,t ≤ 1 − F−

d,t (5d)

Let CD+
d,t and CD-

d,t be the cost of upward and downward
regulation of the demand d during the time interval t, respec-
tively. The cost of the demand response for a single time
period is given by (CD+

d,t α
+
d,s,t+CD-

d,tα
−
d,s,t)P

D
d,t. Since the cost of

upward/downward regulation is strictly positive and one of the
objectives in our optimization problem is to minimize the cost
of demand response, at an optimal solution both the upward
and the downward regulation variables for a demand cannot be
nonzero. For example, if an optimal decision is to increase a
demand at bus d by 10% during a time period t then the opti-
mal decision variables would take up the values α+

d,s,t = 0.1
and α−

d,s,t = 0.0 with the cost of 0.1CD+
d,t . A feasible solution

for this situation could be α+
d,s,t = 0.2 and α−

d,s,t = 0.1 but
then the cost of this solution is 0.2CD+

d,t + 0.1CD-
d,t which is

obviously higher than the optimal solution cost of 0.1CD+
d,t .

2) Conservation of the Demand: If a demand at a bus d is
flexible in the time window [ts, tf ] and it is required that the
total consumption over a time period is kept constant then this

situation can be modeled using the following linear equations:
∀d ∈ D0, [ts, tf ] ∈ T F

d = {[ts, tf ] : ts, tf ∈ T , ts < tf }:
tf∑

t=ts

pD
d,s,t =

tf∑

t=ts

PD
d,t (6)

where T F
d is the set of flexibility windows for the demand at

bus d. For example in Fig. 1 we have T F
d = {[t1, t2], [t3, t4]}.

The optimization would decide the amount of the demand
to be consumed in each time interval. Note that we assume
that there is enough power to support a task that requires more
than one time interval to finish. This assumption is justifiable
because of the lower bound on the value of αd,s,t. We also
assume that the flexibility can be utilized in any way across
the time intervals. In practice the flexibilities depend on the
type of demands, e.g., for some demands we may need to con-
sider constraints on up and down times, charging/discharging
rates, etc. All these technical details can be modeled using lin-
ear constraints. However technical details and discussion on
the subject are beyond the scope of this paper.

C. Operating Constraints

Generation from the conventional generators is bounded by
the following inequality constraints:

PG-
g ≤ pG

g,t + �pG
g,s,t ≤ PG+

g (7)

where PG-
g , PG+

g are the lower and the upper bounds on the
generation output of the generator g, respectively.

It is not possible for a conventional generator g to con-
siderably deviate from its current operating point in short
time scales [21]. Therefore we limit the amount of change
in the generation depending on the ramp rate of the individual
generators. The ramp rate constraints are given as:

�P−
g,t ≤ pG

g,t+1 − pG
g,t (8a)

pG
g,t+1 − pG

g,t ≤ �P+
g,t (8b)

The line flow limits are given by the following set of
constraints: ∀l ∈ L , t ∈ T , s ∈ S :

− Pmax
l ≤ pL

l,s,t ≤ Pmax
l (9)

where Pmax
l,t is the real power capacity limit of the line l.

D. Scenarios for the RES

Forecasting of renewable energy generation is a very active
area of research, especially for wind and solar energy applica-
tions. While forecasts were traditionally provided in the form
of a single-valued trajectory informing of the expected gener-
ation for every individual lead time and location of interest,
emphasis is now placed on probabilistic forecasts in vari-
ous forms [28]. For decision problems where the space-time
dependence structure of the uncertainty is important, forecasts
should optimally take the form of space-time trajectories.

In this paper, scenarios of the wind power generation are
used as input to the stochastic programming approach to solve
the proposed problem. The exact setup, data and methods
of [28] are employed. A sample of 100 space-time scenar-
ios are generated which will be used for the simulation of
results. The scenarios are made available online at [25].

Downloaded from http://iranpaper.ir



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BUKHSH et al.: INTEGRATED MULTIPERIOD OPF MODEL WITH DEMAND RESPONSE AND RENEWABLE GENERATION UNCERTAINTY 5

In our simulations we assume zero cost of generation from
wind power [29]. Moreover wind power from the source w in
the time period t can be spilled continuously to zero at the
price of CW

w,t. Let PW
w,t be the initial forecast of power genera-

tion availability and let �PW
w,s,t be the change in the generation

availability corresponding to the scenario s for the generator
w in the time period t, respectively. The wind power output
for the generator w is modeled as follows:

0 ≤ pW
w,s,t ≤ PW

w,t + �PW
w,s,t (10)

E. Objective Function

Let λw,s be the probability of the scenario s for the renew-
able generator w. The objective is to minimize the cost of
generation from the conventional generators, and optimally uti-
lize the generation from the RES while initiating the demand
response from the distribution system operators. Note that we
do not consider ramping cost of the generators between the
time intervals. Overall the objective function is to minimize
the following, over the given time horizon:

z =
∑

g∈G

f (pG
g,t) +

∑

s∈S

λw,s

⎛

⎜⎜⎜⎜⎜⎝

∑

w∈W

CW
w,t

(
PW

w,t − pW
w,s,t

)

︸ ︷︷ ︸
Cost of wind spillage

(11)

+
∑

d∈D

(
CD+

d,t α
+
d,s,t + CD-

d,tα
−
d,s,t

)
PD

d,t

︸ ︷︷ ︸
Cost of demand response

+
∑

g∈G

(
CR+

g,t �pG+
g,s,t + CR-

g,t�pG-
g,s,t

)

︸ ︷︷ ︸
Cost of generation regulation

⎞

⎟⎟⎟⎟⎟⎠

F. Overall Formulation

The overall formulation of the problem is given as follows:

min
∑

t∈T

z
(

pG
g,t, pW

w,s,t, αd,s,t,�pG
g,s,t

)
(12a)

subject to

(1 − 10) (12b)

Depending on the objective function f (pG
g,t), the overall

problem is then linear or quadratic program (LP or QP). We
use CPLEX 12.06 [30] called from an AMPL [31] model to
solve the problem.

In principle, other physical and operational constraints such
as spinning reserve requirements can be included in the current
formulation, and the solution approach that we describe here
remains valid.

III. NUMERICAL EXAMPLE

A. Illustrative Example: 4 Bus Case

Consider a small 4 bus network as shown in Fig. 2. The
network consists of a generator at bus 1 and a wind farm

Fig. 2. 4 bus network, with a conventional generator at bus 1 and a wind
farm at bus 2.

Fig. 3. Initial forecast and 20 scenarios for wind power generation at bus 2.

at bus 2. Total demand in the network is 100 MW. Complete
data for this network is available online at [25].

We assume that the time horizon consists of twenty four
time periods, i.e., T = {1, 2, · · · , 24}, as shown in Fig. 1. We
assume 20 different scenarios for the wind power generation
at bus 2 as shown in Fig. 3.

The marginal price of the conventional generator at bus 1
is a monotonically increasing quadratic function of the real
power generation. We assume the cost of wind spillage to be
unity and the ramp rate of the generator at bus 1 to be ±10%.
It is important to note that if there is no flexibility in the
demand, the ramp rate of the generator at bus 1 should be
equal to or greater than the maximum rate of change in the
demand during any given time interval to ensure the feasibility
of the optimization problem.

The regulation cost of the generator at bus 1 is assumed to
be CR+

1,t = 1.4 > 0.8 = CR-
1,t. We further impose the constraint

that the total demand should be conserved over the given time
horizon and the cost of the demand response is considered
to be CD+

d,t = CD-
d,t = 0.5. Fig. 4 shows the cost of genera-

tion as a function of wind power penetration in the system.
We can observe a general trend that the cost of generation
is monotonically decreasing as the wind power penetration in
the system is increased. This follows from the fact that we
have assumed zero cost of generation from the wind. Even if
the cost of wind power generation is non-zero, it is much less
than the cost of conventional power generation and hence this
assumption is justifiable. Further we note that when there is no
flexibility from the demand, uncertain wind power generation
can only be managed by adjusting the generator outputs in the
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Fig. 4. Generation cost vs wind power penetration for 4 bus network.

second stage of the problem. As the wind power penetration is
increased in this case, more wind is spilled because the genera-
tors cannot be regulated cheaply and rapidly to accommodate
the variations from the wind power. The cost of generation
decreases when the demand is made more flexible. There is no
difference in the cost of generation between ±20% and ±30%
demand flexibility. This is because of the fact that tapping on
demand as a resource is no longer economical. For this exam-
ple we can say that for the given ramp rate of ±10% and
for the given RES scenarios, the optimal demand flexibility
needed to fully utilize the wind power is ±20%.

We have used scenarios to capture the uncertainty in the
generation from the RES. Increasing the number of scenarios
results in more accurate modeling of the stochastic process.
Fig. 5(a) shows the difference in the cost of generation when
scenarios are increased from 20 to 100. The difference in the
cost of generation between 20 and 100 scenarios increases as
the wind penetration in the system increases. The difference
between the cost of generation for given demand flexibilities
and penetration levels, is always less than 6% (corresponding
to a 400% increase in number of scenarios). Fig. 5(b) shows
the monotonically increasing trend of generation cost as the
number of scenarios is increased. We note that the curve in
Fig. 5(b) smooths off as the number of scenarios is increased,
which shows that after a certain point including more scenarios
will not have any significant effect on the optimal solution.

B. 39 Bus Case

Consider the 39 bus New England test network obtained
from [32]. This test network consists of 39 buses, 10 gen-
erators, and 46 transmission lines. We modify the network
as follows. We consider 8 conventional generators, and two
renewable generation sources at the buses 34 and 37, respec-
tively. Demands at the buses 7, 8 and 12 are considered to
be flexible i.e., D0 = {7, 8, 12}. The topology of the network
is shown in Fig. 6. The default data from [32] assumes same
cost of generation for all of the generators. We take more real-
istic generation cost data from [33] to use in our simulations.
The modified data of this network is available at [25].

Let the time horizon be T = {1, 2, · · · , 12} (first 12
time periods from the Fig. 1). We consider 100 indepen-
dent scenarios for the renewable generators at the buses 34
and 37. The total demand in the network is 6254.23 MW.

Fig. 5. Robustness of the solutions of 4 bus network with respect to
uncertainty in the wind power generation.

Fig. 6. Modified 39 bus system with 8 conventional generators, 3 flexible
demands, 18 inflexible demands and 2 renewable generators.

Approximately 12% of this demand is at the flexible demand
buses 7, 8 and 12. The total generation capacity in the network
is 7367 MW, and approximately 15% of the total capac-
ity is from the renewable generators at the buses 34 and
37. We assume that the ramp rate of all the conventional
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Fig. 7. Numerical results for 39 bus system.

generators is ±5%. The cost of the generator regulation is
CR+

g,t = 1.8, CR-
g,t = 0.5, ∀t ∈ T , g ∈ G .

We further impose a constraint that the demand at the flex-
ible bus 8 is conserved between the time intervals [4, 8]. The
cost of using demand flexibility is CD+

d,t = 1.1, CD-
d,t = 0.7 for

all the demand buses except for bus 8 where the cost when
demand is conserved is CD+

8,t = CD-
8,t = 0.5, 4 ≤ t ≤ 8.

Fig. 7 shows the result of our model on the 39 bus case as
the flexibility of the demand is increased. Line limits were not
active at the optimal solution, therefore the locational marginal
prices at all the buses were equal. The solid (blue) line shows
the results when the demand at buses 7, 8 and 12 are not
flexible. In this case the marginal prices follow the behav-
ior of the demand curve, i.e., the prices are high when the
demand is high and the prices decrease with the decrease in
demand. If demand is ±10% flexible then the marginal prices
are low but this flexibility (coupled with ±5% ramp rate) is not
enough to have constant system price. We observed that with
±10% demand flexibility, the cost of generation is decreased
by 3.9%. Further as the flexibility of demand is increased, the
system price tends toward a constant function. It is interest-
ing to note that the difference in system prices is very small
for the demand flexibilities of ±40% and ±100%. This is
because constant system price is the optimal solution and that
can be achieved by having ±40% flexibility on the demand
side. Note that the 40% flexibility is in the flexible demands

that constitutes 12% of the total demand. In other words 40%
demand flexibility in the flexible demands corresponds to 4.8%
flexibility of the total demand.

An important point to note in Fig. 7(b) is that the demand
curve corresponding to ±40% demand flexibility is not con-
stant. This non-constant behavior shows that the optimal
solution to accommodate the wind power uncertainty is not
peak-shaving or valley-filling but it is to have a demand
curve that yields constant system prices. Our optimization
approach optimally shifts demand to the time periods where
the power generation is cheaper and reduces the demands in
the time periods where the power generation is expensive. This
shift considers the prices of the demand response and the
generation regulation. We would like to emphasize that this
optimization approach is more optimal and generic than the
valley-filling and peak-shaving approaches [34] that primarily
aim to minimize the transmission losses.

Another interesting point to observe is that since we con-
sider a linear model of the system, the results are generally
independent of the location of the flexibilities in demand, i.e.,
the flexibilities in demands can come from any node of the
network as long as the network constraints are respected. Our
linear model ignores transmission losses and practical trans-
mission systems are lossy. However the effect of line losses
is expected to be very small.

C. Larger Test Cases

We consider the standard IEEE test networks consisting of
14, 30, 57, 118 and 300 buses from the test archive at [35].
We also consider 9, 24 and 39 bus test cases from [32]. For all
the test cases, we assume ±10% ramp rates for the conven-
tional generators, 50 scenarios for the generation from RES
and 12 time intervals. We generated a large number of scenar-
ios by considering different demand flexibilities and choices of
wind generation buses. To keep consistency across all scenar-
ios we considered that for all cases wind power penetration is
always less than or equal to 25%. For all of the instances, total
demand across the time horizon is constrained to be conserved.

Tab. I gives the results of some of the scenarios on the
57, 118 and 300 bus networks. The second column in this
table gives the set of buses where the wind power genera-
tion is assumed. The third column gives the percentage of the
wind power penetration in the system. Columns four and five
give the set of buses that are flexible and their percentage
of the demand in the system, respectively. The second last
column gives the assumed flexibility in the set D0. The last
column shows the improvement in the cost of generation when
compared to solving the problem with inflexible loads.

Results in Tab. I show that considerable savings can be made
in the generation cost if a small proportion of the demands is
flexible. For example consider the 57 bus case with W = {3}
and D0 = {12}. In this case the load at bus 12 is approximately
30% of the total load of the network. The result shows if the
demand at bus 12 is ±10% flexible, the cost of generation can
be improved by 4%, i.e., approximately 3% (10% of 30%)
flexibility in demand results in 4% reduction in the cost of the
generation.
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TABLE I
SELECTED RESULTS FROM THE 57, 118 AND 300 BUS TEST NETWORKS

Fig. 8. Solution times for solving the proposed model on the IEEE standard
test cases. The problems were constructed considering different networks,
demand flexibilities and wind penetration levels.

Fig. 8 gives the run times on all standard test cases.
Problems were solved on a single core 64 bit Linux machine
with 8 GiB RAM, using AMPL 11.0 with CPLEX 12.6 to
solve LP problems (only linear cost for generation is con-
sidered). The results are for a large number of scenarios for
wind power penetration (less than 25%) and demand flexibili-
ties. The number of variables is determined after the pre-solve
operation by AMPL which eliminates some of the redundant
variables from the model. Fig. 8 shows that the solution times
scale well with increasing size of the network.

IV. CONCLUSION

In this paper we presented a two stage stochastic program-
ming approach to solve a multiperiod OPF problem with
flexible demands. Demand response is integrated into the
model as well to capture demand as a flexible asset. We
observed that considerable savings in power generation costs
can be made if a small proportion of the demand is flexi-
ble. The flexibility of the demand can come from any node
of the network provided it respects the network constraints.
Numerical results show that the uncertain wind power gen-
eration can be optimally utilized using flexibilities from both
demand and generation sides. Computational times show the
promise of the proposed approach.
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