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ABSTRACT

DED (Dynamic economic dispatch) problem schedules generation units during the whole dispatch period
in order to minimize the fuel costs. On the other hand DRPs (Demand Response Programs) focus on
increasing customers' benefit and improving network reliability. If these two problems are optimally
integrated considering their interactions at each side, they will be implemented more effectively. One of
the main concerns in the TOU (Time of Use) DRP is the optimal pricing during different periods. In this
paper, TOU which focuses on the demand side has been intelligently integrated with the DED problem
which focuses on the supply side. In the combined problem namely DEDTOU, a new procedure for the
optimal pricing will be presented so that the fuel costs in the DED problem are minimized and the
optimal prices during different periods i.e. valley, off-peak, and peak periods in TOU are determined
simultaneously. By the way, not only the network reliability and customers' benefit are increased but also
fuel costs are decreased and generation units are optimally scheduled. Actually, DEDTOU is a win-win
game both for the demand and supply sides. DEDTOU is applied on a ten units test system and results

DEDTOU indicate the effectiveness of the proposed model.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

SG (Smart Grid) is a kind of grid in which the electrical energy is
able to be transmitted in a controlled and smart way from the
supply side to the demand side. In SG, there is a two-sided
communication between the supply and demand sides. Cus-
tomers play an important role in SG, so that with modifying their
consumption patterns due to the information, incentives, and some
limitations, cause the cost reduction and reliability improvement.
Nowadays, with development of SGs, a tendency for implementing
the DSM (Demand Side Management) is growing more than ever
[1]. The concept of DSM includes all the activities which aim at
modifying the consumption load curve. The complete integration of
DSM requires communication systems and sensors such as the
smart metering and AMIs (Advanced Metering Infrastructures).
System stability and the share of renewable energy can be
enhanced through using DSM [2]. Generally, DSM activities are
divided into two main categories as follows [1].
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- EE (Energy Efficiency): including the activities in order to
decrease the required energy to provide services or productions.

- DR (Demand Response): including the activities at the demand
side in order to modify the customers' consumption patterns by
changing electricity prices during different periods, paying in-
centives or even imposing penalties when the costs of electricity
generation, transmission, or distribution are high or when the
network reliability is jeopardized.

AMI can be counted as a start point for the implementation of
DRPs (Demand Response Programs). In fact, AMI is the connector of
the utility and customers which includes smart meters, commu-
nication modules, LAN (Local Area Network), data collectors, WAN
(Wide Area Network)), NMS (Network Management System), MDM
(Meter Data Management), and DMS (Data Management System)
[3]

DRPs are divided into the incentive based and price based pro-
grams. This paper mainly focuses on the TOU (Time of Use) which is
a common price based DRP in which by changing the electricity
prices during different periods; the customers are motivated to
modify their consumption's patterns. In TOU, the electricity price
during the peak period is high and it is low during the valley period.
This pricing pattern motivates customers to cut and reduce their
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consumption during the peak period or shift it to the valley or off-
peak periods [4,5].

In Refs. [6], an optimal load management strategy has been
proposed for the residential customers. The communication in-
frastructures are used in their proposed strategy and the electricity
price and demand are forecasted. They investigated an optimal
connection between the electricity prices and the residential de-
vices and electrical vehicles. This model allows customers to con-
trol their daily loads and electricity prices and consequently
minimizes their electricity bills.

Ref. [7] investigates the methods of better implementation of
TOU. In their proposed model, the real time pricing method has
been used for the multi-periods loads. They also simulated the ef-
fects of their proposed model on the load curve and power market
balance. Finally, they chose the Iran's network daily load curve for
investigation the effects of real time pricing in TOU. Also, they
showed that optimal implementation of TOU can effectively in-
crease the customers' benefits and improve the network reliability.

A pricing algorithm has been proposed in Ref. [8] which auto-
matically schedules the energy storage devices in such a way that
they store electrical energy when the electricity price is low and put
it available when the electricity price is high. Their simulation re-
sults showed that their proposed algorithm can decrease or even
omit the peak period that consequently reduce the total electricity
price up to 39%.

Effects of DRPs cooperated with AMIs on the electricity price
swing and also the reliability improvement have been investigated
in Ref. [9]. In Refs. [9], the effects of DRPs and smart metering in-
frastructures such as AMIs on the system reliability and price
fluctuation have been investigated. Actually, the optimal incorpo-
ration of DRPs and smart metering has been investigated. Also, the
concept of strategic interaction between generation units and DRPs
enabled with the smart metering has been modeled too. In their
model, customers can also sell electricity to the grid. They showed
that whatever the price of electricity bought from customers was
high the network reliability would be more improved. They took
into account different amounts of the smart meters installation.
They also showed that a more reliable and competitive long term
electricity market is achieved by applying more DR resources.

In Refs. [10], the mathematical modeling of DRPs was presented.
They applied their model on the peak load curve of the Iranian
power grid on 28/08/2007. They compared different DRPs in the
cost reduction and reliability improvement and finally they prior-
itized different DRPs based on the SSIs (Strategy Success Indexes).

All the above mentioned works focuses on increasing the cus-
tomers benefit at the demand side neglecting the cost of imple-
menting DRPs at the supply side and consequently they do not
determine the optimal prices or incentives in DRPs. Actually, if DRPs
are implemented intelligently, they make profits both for the de-
mand and supply sides and not just for the customers at the de-
mand side.

One of the main ISO's (Independent System Operator's) goals in
the electrical power system is the increase of reliability with
smoothing the load curve which can be achieved by the peak
shaving and valley filling. On the other hand determining the
optimal prices during different periods (valley, off-peak, and peak)
in the price based DRPs and also incentive in the incentive based
DRPs is one of the ISO's challenges and it should be appointed based
on a feasible and economical approach. Otherwise, high additional
costs (the cost of implementing DRPs) may be imposed at the
supply side or new peaks may be created when DRP ends [11], and
the network reliability may be decreased [12] (a large number of
customers begin consuming power when the time of DRP ends)
which is not based on ISO's point of view. Therefore, the electricity
prices during different periods in the price based DRPs and also the

incentive in the peak hours in the incentive based DRPs should be
appointed optimally. If they are determined according to the supply
side, so that the cost of DRPs' implementation (the reduced income
of the generation companies due to changing electricity prices in
the price based DRPs or total incentives paid to the customers in the
incentive based DRPs), are taken into account in the total objective
function, the optimal prices and incentives would be determined
optimally and this procedure prevents high additional cost or new
peaks.

One of the important problems in the power system operation is
the ED (Economic Dispatch) problem which focuses on the supply
side. In this problem, the main goal is the optimal scheduling of
generation units in order to minimize the fuel costs subject to some
constraints [13]. The DED (Dynamic economic dispatch) problem
schedules generation units during the whole dispatch periods in
order to minimize the fuel costs subject to some quality and
inequality constraints [14]. With increasing the size of power sys-
tems, the DED problem becomes complicated. Consequently, as
there are a lot of local optimal solutions, finding the optimal solu-
tion will be more difficult. Population based meta-heuristics algo-
rithms can usually solve non-convex and non-smooth optimization
problems successfully.

In this paper, by integrating TOU with DED, the supply side is
connected to the demand side. In other words, in the combined
problem i.e. DEDTOU the generation units are optimally scheduled,
so that the fuel costs are minimized. Also, the optimal prices during
different periods i.e. peak, off-peak, and valley periods in TOU are
determined concurrently.

DEDTOU including some linear and non-linear practical con-
straints such as the valve point loading effect, Ramp Rate limits, and
SRRs (Spinning Reserve Requirements) is a complicated optimiza-
tion problem with non-smooth, non-convex objective function
which has been solved be a population based meta-heuristic
optimization algorithm namely ICA (Imperialist Competitive Algo-
rithm). Also, to show the correctness of the proposed method and
the strength of the ICA versus other techniques, the total cost has
been obtained by different optimization algorithms namely PSO
(Particle Swarm Optimization) [15], GA (Genetic algorithm) [16],
ABC (Artificial Bee Colony) algorithm [17], and BCO (Bee Colony
Optimization) [18]. Furthermore, the proposed model has been
applied on three types of customers with different values of PEMs
(Price Elasticity Matrixes) i.e. one, half, and two times of PEM.
Moreover, the effects of intelligent implementation of TOU on
improving SRRs have been investigated too.

Ref. [19] presents the solution method of DED by ICA without
integration to any DR programs. It should be noted that when DED
is optimally integrated with DR, the new optimization problem i.e.
DEDDR is completely different from simple DED with different
objective function and constraints which has a completely different
solution method and handling constraints which is necessary to be
developed.

There are a few works related to the ED problem integrating
with the DRPs. References [20—23] have integrated the incentive
based DRPs with the ED problem. A. Ashfaq et al. presented a
combined model of ED integrating with the incentive based DR
[20]. In their model, incentives are paid to the customers to reduce
their demand during peak hours. However, just peak hours have
been taken into account and it has not been applied to the whole
day. Also, they have neglected some practical constraints such as
the valve point loading effect, Ramp Rate limits, and SRRs. N.L
Nwulu and X. Xia investigated the incentive based DR integrating
with the economic and environmental dispatch [21]. In their
model, at the all periods (even at valley period) incentives are paid
to the customers to reduce their consumption. This is not a
reasonable and realistic procedure; also this may not be based on
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the ISO's point of view. Moreover, the valve-point loading effect,
and SRRs have not been considered in their model. In the above
mentioned works, the incentive based DRPs have been taken into
account. In both of them, the generation units are optimally
scheduled and the optimal incentive is determined concurrently.

Ref. [22] is actually an extension of [21]. Ref. [21] was under a
regulated environment. In Refs. [22], an integrated model of DEED
(dynamic economic emission dispatch) and incentive based DR
has been presented which is under a deregulated environment.
Actually the authors have presented a new solution method for
solving their proposed model namely the closed-loop strategy.
This strategy is able to give feedback and update inaccurate so-
lutions. The proposed solution yields better results such as the
lower cost, emission, and losses. Actually [22], focuses on pre-
senting a new solution method for the proposed combined
problem.

In our previous work i.e. Ref. [23], an integrated model of DED
and EDRP (Emergency Demand Response Program)/DLC (Direct
Load Control) has been presented considering non-linear respon-
sive load models. In the combined problem namely DEDDR the fuel
costs are minimized and the optimal incentives in EDRP/DLC are
determined simultaneously. Also, a new scheme for appointing the
most reliable load model (linear, potential, exponential, and loga-
rithmic) has been presented too. Beside a complete work in Refs.
[23], this model is just for the incentive based DRPs and cannot be
applied to the price based DRPs.

Ref. [24] integrates TOU and DEED (dynamic economic emission
dispatch) problem. The authors have presented a combined model
of TOU and ED which is not so easy to be implemented on practical
systems. In other words, a practical and clear procedure for deter-
mining the optimal prices in TOU has not been presented which is
the main goal of intelligent integration of TOU and ED problem.
Also, some practical constraints such as the SRRs and valve point
loading effect and also investigating the effects of DR on the load
curve characteristics have been neglected in their work. Moreover,
the solution method and handling constraints have not been pre-
sented in Ref. [24]. Furthermore, the AIMMS (Advanced Interactive
Multidimensional Modelling System) software has been used to
solve the combined optimization problem. Generally, applying a
flexible framework and the solution method in order to handling
various practical constraints related to different complicated, non-
linear, non-smooth, and non-convex optimization problems, is
necessary. Because some softwares may not be able to solve such
problems successfully. On the other hand in Refs. [24], there is no
comparison with the other solution methods to validate results
while this task has been carried out well in the presented paper.
Furthermore, the DR participation percent has been neglected
which is taken into account in many certified papers
[4,10,23,29—32].

The main contributions of this paper are organized as following.
(i) Intelligently integration of a common price based DRP namely
TOU with the DED problem. (ii) Presenting a new and clear optimal
pricing in TOU by optimal integration of DED and TOU. (iii)
Considering some practical constraints such as the valve point
loading effect, SRRs, Ramp Rate limits etc. in the DEDTOU. (iv)
Investigation the effects of DEDTOU on improving the load curve
characteristics, SRRs, and cost reduction. (v) Presenting the solution
method and handling constraints of DEDTOU by meta-heuristics
algorithms with a focus on ICA. (vi) Showing the correctness,
effectiveness, and applicability of DEDTOU by considering different
PEM values and optimization algorithms.

The rest of this paper is organized as following. In Section 2 the
problem formulation of the proposed model i.e. DEDTOU is pre-
sented. The solution method of DEDTOU is given in Section 3. Nu-
merical simulation and results are presented in Section 4. Finally in

Section 5 the conclusion is drawn.
2. Problem formulation

DED is one of the important optimization problems used in
power systems operation to obtain the optimal scheduling of the
generation units over the entire dispatch period. The cost function
of the DED problem considering value-point loading effects is as Eq.
(1) [25,26].

Fi(Pi¢) = a; + biP;; + P}, +

d;sin (ei (P,-mi“ - Pl-,t)) ‘ (1)

where P; is the power output of the ith unit at the tth interval, a;, b;,
¢c; are the fuel cost coefficients of the ith unit, and d;, e; indicate the
valve point loading effect.

The cost of implementing TOU is as Eq. (2).

Crou(t) = po(t)-do(t) — p(t)-d(t) (2)

This cost is actually the reduced income of generation com-
panies due to implementation of TOU which should be taken in the
account in the final objective function (see Eq. (3)). Finally, the
objective function of DEDTOU is minimization of Eq. (3).

TOF(Py) = " {[ 200 {ai + biic + ci(Pio)’
+ ‘d,' sin(ei (P{”m - n))m + CTou(f)} (3)

where Ng is the number of the generating units and Pi"“'" is the
minimum power generation. To calculate the optimal prices during
different periods, the parameter ¢ is applied to change the prices
during different periods as Eq. (4). In other words one of the main
goals of DEDTOU is optimally determination of this parameter.

PPeak Paye + 0
P = | POff—Peak | = Pave (4)
Pvalley Pvave — 0

where p is the price matrix during whole dispatch interval (in this
paper T = 24 h), paye is the initial average electricity price and ppeqk,
POff — Peak, and pygiey are the new modified electricity prices during
peak, off-peak, and valley periods, respectively. Actually with
increasing o, the peak electricity price (ppeqx) is increased too while
the valley electricity price (pvaiey) is decreased. This procedure will
be continuing until the optimal amount of ¢ (when the objective
function in DEDTOU i.e. Eq. (3) has the least possible amount) and
consequently the optimal electricity price matrix i.e. p in TOU (See
Eq. (4)) are determined. In fact, this procedure motivates customers
to modify their consumption patterns so that they reduce their
consumption in the peak period or shift it to the valley or off-peak
periods.

2.1. Constraints

The proposed model i.e. DEDTOU should meet the following
equality and inequality constraints.

Power balance constraint:

N,
> APt =dt) + Pt t=1,..,T (5)
where d(t) and P;; are the load demand and the power loss of
transmission line at the tth time interval. d(t) is calculated by Eq.

(23) which is obtained due to Eqs. (13)—(22) and P(t) is calculated
by Kron's loss formula which can be given as (6).
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N, N, ..
PL(t) = Zi:&’] Zj:&’] Pi,l'Bl(lv.’)PjI (6)

where By(ij) is the power loss coefficient of the transmission
network.

Limits of the parameter o:

a(O)™" < a(t) < a(t)™™ (7)

In this paper o(t)™" and o(t)™™ are considered to be 0.25 and
25 $ per MWh, respectively.

Power generation limits
PMin < P, < PM%j —1,2...Ng (8)

where Pl.'”i” and P]"™ are the lower and upper generation limits for
the ith unit.

Generator ramp rate limits

The increase and decrease rates of the generators' power output
are usually called the RU (Ramp Up) () and RD (Ramp Down),
respectively. So, the operating ranges of the ith unit are as Eq. (9).

{ Pi¢ — Pir—1 <RU; 9)
Piy_1— Py <RD

where RU; and RD; are the Ramp Up and Ramp Down limits of the
ith unit, respectively and are usually expressed in MW/h.

SRRs (Spinning reserve requirements)

SRRs for the DED problem are expressed by Eqgs. (10)—(12) [27,
28].

D1, = 3N P _ (d(t) + Pe + SRR >0, t=1,...,T  (10)

D2¢ = S0¢ (min (PPox -

i=1 Pi,thUi))

—SRR: >0, t=1,...,T

(11)

D3t:Zl’.Vf] (min(P}“a"—Pi,t, %)) —SRR, >0, t=1,....,T

(12)

where SRR; and SRR, are the SRRs for the 60 and 10 min compen-
sation time in the tth hour and are expressed in MW.

2.2. Economic model of the responsive load

To obtain the optimal consumption at the demand side, the
elasticity is defined as the sensitivity of the demand respect to the
price as Eq. (13) [29—32].

E<t7 t,) _pol(t) ad(t) {E(t, £)y<0 ift=t

do(t) 0p(t') | E(t,t) >0 ift=t
where E is the elasticity, d(t) and do(t) are the customer's demands
after implementing TOU and before it during the period t, p(t') and
po(t) are the elasticity price and the initial electricity price during
the period ¢, respectively.
For 24 h in a day, the self and cross elasticity values can be given

(13)

as a 24 x 24 matrix as Eq. (14).

[ Ad(1) T [ Ap(1) ]
do(1) po(1)
Ad(2) Ap(2)
do(2) E(1,1) E(1,24) Po(2) a4
Ad(3) | = : : | Ap3) 14
d0(3) E(24,1) - E(24,24) PRE)]
Ad(24) Ap(24)
L do(24) | L po(24) |

The net-profit of the customer is as Eq. (15) which is related to
the customer's income because of the electricity consumption and
producing their commodities.

NP(t) = B(d(t)) — d(t)p(t) (15)
where B is the profit which customers obtain by consuming power.

To maximize the customer benefit, the derivative of Eq. (15)
should be zero.

ONP(t)  0B(d(D)) -
adit) ~ adiy PO (16)
alzgjaé(tg)) — o(6) (17)

Taylor series of B is as Eq. (18).

9B(do (1))

B(d(t)) = B(do(t)) +—77n ad(0) [d(t) — do(0)]
1 9%B(dy (1)) 2
5 W[d(t) —do(t)] (18)

To get the optimal consumption by which the customers obtain
the maximum profit, from Eq. (18):

B(d(t)) = B(do(t)) + po(t)[d(t) — do(t)]
1 polt)
3 B Do A0 — do(0) (19)
Differentiating:
0B(d(t)) _ d(t) —do(t)
s =0 (1 E napts) (20)

By combining Egs. (20) and (17), for the single-period model of
the responsive load:

d(t) = do(t) x (1 PO = O p t)) 1)

Po(t)
The multi period model is as Eq. (22):

24 ! !

d(t) = do(t) x {1+ > E(t.t) L(t’,’;)(t) (22)
ot Po
t -t

Finally, the complete and combined model including the single
and multi-period models of the responsive load is as Eq. (23).
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d(t) = do(t) {1+ZE(t t) ()T:?;Jm} (23)

3. Solution method of the DEDTOU problem

In this part a procedure for solving the DEDTOU problem by ICA
has been presented. However, the presented solution method can
be extended for the other population based meta-heuristic algo-
rithms. The possible solutions in ICA [19,33] are called countries, in
PSO [15] particles, in GA [16] chromosomes, in ABC algorithm [17]
food sources, in BCO [18] bees etc.

In DEDTOU, the population's parameters are the same power
outputs of generation units which should be determined in a way
that minimize the objective function in Eq. (3).

In fact, in DEDTOU every scheduled generating units output at
each hour comprises a candidate. The kth candidate (PGy) at each
hour is defined as Eq. (24).

PG = [Pi1sPhas s Pijs o Py |, k=1,2..PS (24)

where PGy is the current position of the kth vector, Ng is the number
of generation units, PS is the population size, j is the generator
number, and Py is the power output of the jth generation unit.

The power balance constraint (see Eq. (5)) can be met by adding
a penalty factor to Eq. (3). By the way the evaluation function of
DEDTOU is minimization of Eq. (25).

=S S TOF(Pry) + Kn-abs (370 Pr — dit)
)}

where Kj, is the penalty factor which can be written as Eq. (26) [34].

(25)

Ko =500 x v n=1,2...Niger (26)

where n and Nj, are the number of iteration and the maximum
number of iterations at each hour. Due to Eq. (26), K;, increases with
the number of algorithm's iteration.

As mentioned before to meet the power balance constraint (Eq.
(5)), a penalty factor (Kn) has been added to the objective function
(Eq. (3)) which forms the Evaluation Function (Eq. (25)). Kn is a
positive real number that has been added to omit insufficient
candidates in ICA, so that if a candidate violates the power balance
constraint (Eq. (5)), due to the amount of violation, it gets a related
Evaluation Function. By the way, the candidates which have better
situation in meeting the power balance constraint will have a
smaller Evaluation Function and insufficient candidates have a
larger Evaluation Function. Therefore, candidates which have small
objective function and penalty term will be selected as the optimal
answer. With performing the process during different iterations of
the program, a candidate which simultaneously has the least
objective function and penalty term (least Evaluation Function) will
be selected as the optimal answer. Therefore, the above mentioned
process will guarantee that when the iterations end, the final
answer meets the power balance constraint [23,35,36].

The flowchart of the solution method and handling constraints
of DEDTOU by ICA is given in Fig. 1.

It should be noted that the main difference between the
evolutionary algorithms is the way of population's convergence to
the optimal solution. In this paper, ICA has been used in which

every population member (candidate) is a country. Initial popula-
tion members are divided into some imperialists and colonies.
Then, colonies by assimilation policy are divided between imperi-
alists. In each imperialist, colonies in direction of improving their
indexes (optimizing the objective function) move toward their
imperialists. If the situation of a colony in an imperialist gets better,
the colony replaces the imperialist. In other words, a Revolution
happens. Then, the imperialist competition begins between impe-
rialist, so that the weakest colony is separated from the weakest
imperialist and is divided between the other imperialists and the
imperialist that loses all its countries will fall.

After this procedure, one iteration of the ICA algorithm finishes.
This procedure continues until the number of iterations finishes
and then the best imperialist (with the minimum evaluation
function) will be selected as the solution of problem. For more in-
formation about these processes refer to [19,33,37].

4. Numerical simulation and results

To show the correctness and effectiveness of the proposed
model (DEDTOU), it is applied on the ten units test system. The ten
units test system's characteristics and transmission line coefficients
are taken from Refs. [38] and [39], respectively. Moreover, to
consider the SRRs, the SRRs for the 60 and 10 min.compensation
time (SRR, and SRR;) have been set to 10% andrz L) x 10% of the
load demand as shown in Egs. (10)—(12). Also,"PEM is given as
Table 1 [29—-32].

Daily load curve is divided into the peak period (11 a.m.—16 p.m.
& 20 p.m.—24 p.m.), the off-peak period (8 am.—10 am. &
17 p.m.—19 p.m.), and the valley period (1 a.m.—7 a.m.). Participa-
tion percentage of TOU is considered to be 20%. It means that 20% of
the total load participates in the TOU. The initial average electricity
price (pave) is considered to be 25 $/MWh. Three different groups
with different values of PEM (different consumption patterns) have
been taken into account. Scenario one is the base case without
implementing TOU; scenarios two, three, and four are after
implementing TOU with the PEMs equal to 1, 0.5, and 2 times of
Table 1, respectively.

To evaluate the performance of TOU in improving the load curve
characteristics, some factors i.e. the load factor, peak to valley, and
peak compensate are defined as Eqs. (27)—(29), respectively.

oy Sraqd(t)

LF% = 100 x (Txtdr]naxa)> (27)
o dmaX(t) _ dmin(t)

PV% = 100 x (W) (28)
o dgi(t) — dm¥(t)

PC% = 100 x <W> (29)

In all scenarios after implementing TOU, the total cost reduces in
comparison with the base case. Implanting TOU imposes an addi-
tional cost (Croy) which is the reduced income of generation
companies due to implementing TOU. But, the total cost which is
sum of the cost of generating units and the total incentive, reduces.
It is because of the fact that customers who participate in the TOU
reduce their consumption during the peak hours or shift it to the
valley or off-peak periods.

As expected, by increasing elasticity, Croy is increased and vice
versa. Scenario three has the most cost reduction by 8697.6526 $
(1009268.1377—1000570.4851) and scenario four has the least one
by 4976.8155 $ (1009268.1377—1004291.3222). Also, in all
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\ Calculating the transmission line losses for the kth candidate based on Eq. (6). ’

l

For the Kth candidate the ramp rates limits (See Eq. (9)) and SRRs (See Egs. (10)-(12)) are evaluated.

|

Are constraints Egs. (9)-(12) met ?

No

No

Save the final solution (optimal generation power outputs over the whole dispatch period i.e. 24 hours)
for the related Sigma.

| :

No

= Sigma=Sigma™"

Select the Sigma related to the best solution as the optimal Sigma and
save the related parameters to this Sigma as the optimal outputs
and solution of the DEDTOU problem.

'

Finish

Fig. 1. The solution method of DEDTOU by ICA.

‘ K=1 (k is the number of
country in population) ‘

| |

Calculation of transmission line
losses for the kth country as Eq. (6). 1

Calculating the cost of ‘
implementing TOU as Eq. (2).

Calculating the evaluation
function for kth country by Eq. (25).

Moving of the kth colony toward its
relevant imperialist and exchange the
positions of imperialist and
colony if necessary.

—

Evaluation of ramp rates limits
(See Eq. (9)). if violated then should
be modified toward the near margin

of the feasible solution, also
evaluation of SRRs

No

Imperialist competition and
determining the best imperialist.

}

iteration=iteration+1 l

s . 5 . m No
__iteration=iteration

ax

Yes l
Save the best imperialist as the
solution of problem in the tth hour.

A

2
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Table 1
Self and cross elasticity values.
Peak Off-peak Valley
Peak -0.10 0.016 0.012
Off-peak 0.016 -0.10 0.01
Valley 0.012 0.01 —-0.10
1195000 —
1170000
1145000
£ 1120000
E 1095000 ——Scenario 2
=< o
2 1070000 .ﬁ’r Scenario 3
J,M/ Scenario 4
1045000 : ’,_NJV
1020000 A
<.‘\'Av.\
995000 +——= —_—
0 2 4 6 8 10|12 14 16 18 20 22 24 26
Sigtha (S/MWh)
1021000 - «\k V A
1018000
. 1015000
£
g 1012000 = Scenario 2
é 1009000 - ——Scenario 3
= Scenario 4
1006000
1003000 -
1000000 . _—
0 2 4 6 8 10 12 14 16 18 20 22 24 26
Sigma ($/MWh)

Fig. 2. Cost variation v.s. ¢ for three different groups.

scenarios after implementing TOU total losses decrease too. On the
other hand the amount of parameter ¢ decreases with the amount
of PEM as expected. For example, customers with biggest PEM (two
times of Table 1, scenario four) have the least amount of ¢ (2.00 $/
MWh) as expected and with a same argument, customers with
smallest PEM (half times of Table 1, scenario three) have the biggest
amount of ¢ (10.50 $/MWh) as expected too. It is because of the fact
that, for customers with largest PEM, if ¢ has a big value, it will
impose a high additional cost i.e. Croy in the objective function and
consequently will increase the total cost. Total cost variation
against ¢ for three different groups have been illustrated in Fig. 2.

Table 2
Effects of implementing DEDTOU in different scenarios.

From Fig. 2, the non-linear nature of DEDTOU is clear and the
optimal amounts of ¢ by which the least amount of total cost (See
Eq. (3)) is obtained, are 4.25, 10.50, and 2.00 $/MWHh for scenarios
2—4, respectively (Also, as shown in Table 2).

All characteristics of the load curve i.e. load factor, peak to valley,
and peak compensate are improved for all scenarios as given in
Table 2. The load curves before and after implementing TOU in the
all groups are illustrated in Fig. 3. As is clear from Fig. 3, the de-
mands at the peak hours decrease and shift to the valley periods.
Also, the optimal generators' power output after implementing
TOU (scenario 2) and its equality error (to show the accuracy of
DEDTOU in meeting the power balance constraint in Eq. (5)) are
given in Table 3.

To compare the performances of DED and DEDTOU in meeting
three SRRs constraints described in Eqs. (10)—(12), the amounts of
D1y, D2¢, and D3, for the scenarios one and two are given in Fig. 4. As
is clear from Fig. 4, D1, D2, and D3; are positive in all hours. Also,
these amounts get bigger values in the peak hours for the scenario
two. In other words, after implementing TOU the SRRs improve and
consequently the network reliability is less jeopardized at the peak
hours.

In order to validate results and as there is not a similar work for
comparing results, the total cost has been obtained by different
optimization algorithms [ 15—18]. From Table 4, the obtained results
are validated and also it is shown that the used algorithm i.e. ICA
has better results than the other ones. Moreover, Refs. [21—24]
showed that optimal integration of DRPs can decrease the cus-
tomers and generation costs which validates results too.

5. Conclusion

Cost reduction and reliability improvement are two important
effects of DRPs implementation. If DRPs are implemented intelli-
gently, not only the customers' benefit and network reliability are
increased but also the generation costs are decreased. This is only
possible by choosing the optimal prices during different periods. In
this paper a new and comprehensive procedure for the optimal
pricing in TOU was presented. It was shown that intelligent
implementation of TOU can decrease both the generation and
consumption costs as well as improving the network reliability. The
solution method and handling constraints of the proposed model
i.e. DEDTOU by ICA was presented via some descriptions and the
flowchart. To show the correctness and effectiveness of DEDTOU,
the total cost was obtained by four meta-heuristic optimization
algorithms namely PSO, GA, ABC, and BCO. Comparing with the
other methods, it was shown that ICA has better results. Further-
more, the results were obtained and compared for three type of
customers with different consumption patterns (with different
PEM values) and results showed that customers with biggest PEM
value have the least amount of ¢ as expected and with a same
argument, customers with smallest PEM value have the biggest

Scenario one

Scenario two

Scenario three Scenario four

Optimal o ($/MWh) —
Total generation cost ($) 1009268.1377
Crou ($) -

Total cost ($) 1009268.1377
Total power saved (MWh) —

Total power losses (MW) 1168.5154
Load factor% 81.41

Peak to valley% 4211

Peak compensate% —

4.25 10.50 2.00
998465.4514 997924.9702 999462.7126
3682.9973 2645.5149 4828.6096
1002148.4487 1000570.4851 1004291.3222
270.8457 334.5741 2549136
1158.6736 1150.7145 1164.2994

83.62 84.16 83.48

38.46 37.56 38.68

335 4.13 3.15
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Fig. 3. Load curve before and after implementing TOU.

Table 3
Best dispatch found by DEDTOU for scenario 2.

Hour Load Pi(MW) Py(MW) P3(MW) P4 MW) Ps(MW) Ps(MW) P;(MW)  Pg(MW)  Po(MW) P;o(MW) Violation of the equality constraint
(P —d-P =0

1300 442.8523 219.0288  73.0000 300.0000 123.3443 147.3512 129.9946 47.0000 47.4874 27.7800 0.0000
1250 362.8523 184.6778 137.9834 295.9415 170.8484 102.3862 130.0000 77.0000 20.0450 12.2844 0.0000
1175 291.9060 135.0000 217.9834 2459415 120.8484 130.2495 100.0000 85.4335 30.8440 42.2844 0.0000
1100 227.4273 215.0000 137.9834 1959415 153.0874 138.3567 91.4326 1154335 21.6374 12.2844 0.0000
1150 307.4273 135.0000 217.9834 150.0951 122.6938 160.0000 1214326  93.8544 51.6374 10.0000 0.0000
1250 227.4273 214.1012 297.9834 199.7909 172.6938 160.0000 914326  82.8065 23.3388 22.0813 0.0000
1350 307.4273 294.1012 340.0000 149.7909 179.5668 124.4405 121.1380 68.4792 20.0000 11.9409 0.0000
1475 227.4273 307.0464 267.2895 199.7909 129.5668 128.9955 130.0000  58.3241 49.7729 41.9409 —0.0003
9 1525 307.4273 308.6799 192.8411 205.7710 179.5668 115.6714 130.0000 88.3241 36.0654 30.3263 0.0000
10 1600 379.2825 296.1500 176.2476 183.1380 227.8387 121.4795 130.0000 114.7580 37.5623 10.0000 0.0004
11 1675 459.2825 2219094 256.2476 177.8148 243.0000 143.7502 101.8524 91.6140 53.0217 10.0131 -0.0002
12 1750 380.0134 141.9094 245.5578 127.8148 193.0000 107.3142 955955 91.0632 23.0217 40.0131 0.0000
13 1875 381.0359 221.9094 1814116 86.1469 243.0000 155.1889 1255955  71.8440 44.1866 41.3179 0.0000
14 1900 301.0359 301.9094 261.4116 136.1469 216.0002 122.4425 95.5955 949397 31.2469 11.3179 0.0000
15 1800 301.9469 221.9094 294.4987 139.7764 180.5088 133.3175 99.8251  84.7086 20.0000 10.0000 0.0000
16 1725 233.0923 222.6186 214.4987 168.9966 230.5088 115.5134  93.6005 83.0536 50.0000 10.0000 0.0001
17 1575 313.0923 302.6186 294.4987 172.1877 210.6932 138.1374 63.6005 86.4223 38.0145 29.5013 0.0000
18 1450 393.0923 222.6186 214.4987 199.0124 160.6932 116.6121 93.2340  85.3926 20.0000 10.0000 0.0000
19 1550 426.4722 302.6186 294.4987 149.0124 110.6932 106.6996 119.0173  55.3925 20.2892 40.0000 0.0001
20 1625 346.4722 382.6186 317.4220 133.5041 160.6932 123.8654 89.0173  85.3925 22.9397 42.9210 0.0000
21 1775 266.4722 302.6186 285.2628 182.6512 138.7096 109.7385 59.0173 553925 52.8133 13.3589 —0.0067
22 1850 307.0898 222.6186 205.2628 232.6512 172.0551 120.3078 89.0173  85.3925 55.7464 38.5444 0.0003
23 1750 227.0898 302.6186 180.8315 182.6512 179.3884 160.0000 59.0173  89.9402 52.2188 10.0000 0.0000
24 1650 304.7972 222.6186 137.4699 184.1222 129.3884 1193636 89.0173  82.6220 50.4167 40.0000 0.0000

0N U WN =

m Dt for Scenario 1

1200

1100 m Dt2 for Scenario 1

1000 Dt3 for Scenario 1
900

800

700
m Dt2 for Scenario 2

Wittt =

1 23456 78 91011121314151617 1819 2021 2223 24

Time(hour)

m Dt for Scenario 2

SRRs violation (MW)

Fig. 4. SRRs violation (MW).
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Table 4

Total cost obtained by different algorithms.
Scenario  PSO [15] GA [16] ABC [17] BCO [18]
1 1009985.7942  1010687.4931 1010183.9766 1010355.2419
2 1002856.6711 1003029.4127 1002734.1976 1002681.4973
3 1001459.8419 1001549.2219 1001377.4679 1001179.2974
4 1005127.4415 1006637.3417  1005736.3455  1004988.7491

amount of ¢ as expected too. In the proposed model, the fuel costs
are minimized and the optimal prices during different periods are
determined simultaneously. Improving SRRs is another important
benefit of DRPs which was investigated in this paper too. In the
future work the effects of DRPs on the voltage improvement and
frequency control will be investigated.
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