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 

Abstract— This paper presents a mathematical model for 

representing the total charging load at an electric vehicle charging 

station (EVCS) in terms of controllable parameters; the load 

model developed using a queuing model followed by a neural 

network (NN). The queuing model constructs a data set of plug-in 

electric vehicle (PEV) charging parameters which are input to the 

NN to determine the controllable EVCS load model. The queuing 

model considers arrival of PEVs as a non-homogeneous Poisson 

process, while the service time is modeled considering detailed 

characteristics of battery. The smart EVCS load is a function of 

number of PEVs charging simultaneously, total charging current, 

arrival rate, and time; and various class of PEVs. The EVCS load 

is integrated within a distribution operations framework to 

determine the optimal operation and smart charging schedules of 

the EVCS. Objective functions from the perspective of the local 

distribution company (LDC) and EVCS owner are considered for 

studies. A 69-bus distribution system with an EVCS at a specific 

bus, and smart load model is considered for the studies. The 

performance of a smart EVCS vis-à-vis an uncontrolled EVCS is 

examined to emphasize the demand response (DR) contributions 

of a smart EVCS and its integration into distribution operations. 

 
Index Terms— Demand response, distribution system, electric 

vehicle charging station, neural network, plug-in electric vehicle, 

queuing analysis, smart load. 

I. NOMENCLATURE 

Sets and Indices 

cs    Index for charging station 

i, y          Index for buses 

k            Index for time 

NB         Total number of bus in the system 

j  Index for PEV class 

  j = {automobile car, van (mini, cargo, passenger), 

sports utility vehicle, and pickup truck} 

s    Index for input layer neurons 

ss    Index for substation bus 

r    Index for hidden layer neurons 

t    Index for output layer neurons 
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Parameters 

BCap     Total PEV battery capacity, kWh 

DD Daily driven miles by PEV, mile 

EC Energy consumption of PEV battery per mile 

driven, kWh/mile       

Gi,y `    Conductance of feeder section i-y, p.u. 

Hj,k,r     Hidden layer neuron 

Ij,k Charging current drawn by PEVs of class j at 

hour k , A 

M1/M2/N Queuing model, M1: PEV arrival time-lag 

(minutes) / M2: PEV charging time (minutes) / 

N: Number of PEVs charging simultaneously at 

a given hour k 

NMax Maximum number of PEVs that can be charged 

simultaneously at the EVCS 

Nj
Max Maximum number of PEVs of class j that can be 

charged simultaneously at the EVCS 

NI, NH, NO Number of input layer, hidden layer and output 

layer neurons 

PDi,k , QDi,k Active, reactive power demand at a bus at hour 

k, p.u. 

TPDTPD,  Lower and upper limit on system demand, p.u. 

PSMin, PSMax Minimum, maximum active power transfer limit 

on substation transformer, p.u. 

QSMin, QSMax Minimum, maximum reactive power transfer 

limit on substation transformer, p.u. 

VMin, VMax         Minimum, maximum limit on bus voltage, p.u. 

w j,s,r     Weights on hidden layer of the NN 

W t,r     Weights on output layer of the NN  

WMax Maximum number of PEVs that can wait for 

service at the EVCS 

Yi,y             Magnitude of admittance matrix element, p.u. 

λk Arrival rate of PEVs at the EVCS at hour k, 

minute 

βr, Γ     Input bias, output bias of NN 

θi,y     Angle of complex Y-bus matrix element, rad 

 

Variables 

J1, J2 Objective functions 

Nj,k Number of PEVs charged simultaneously, of 

class j at hour k 

Pchj,k Active power PEV charging demand, of class j 

at hour k, p.u. 
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kEVCSPD ,  Total EVCS charging demand, at hour k, p.u.  

PGi,k , QGi,k
 Active, reactive generation at hour k, p.u. 

PSi,k , QSi,k Active and reactive power injected through 

substation transformer at hour k, p.u. 

Rk Number of PEVs rejected from charging, at hour 

k 

TNk Total number of PEVs charged simultaneously 

from all classes, at hour k 

TPchk Total active power PEV charging demand from 

all class of vehicles, at hour k, p.u. 

Vi Bus voltage, p.u. 

Wk     Number of PEVs waiting for service at hour k 

δ               Voltage angle at a bus, rad. 

II. INTRODUCTION 

In Canada, the second highest source of greenhouse gas 

emissions is the transportation sector, and it is also one of the 

fastest growing contributors to the country’s energy demand. 

According to Transport Canada, almost 35% of the total energy 

demand in Canada is from the transport sector [1]. The 

awareness that significant global warming is being caused by 

vehicular emissions is encouraging the transport sector to adopt 

plug-in electrical vehicles (PEV) [2]. 

However, increased number of PEVs can have a significant 

impact on power distribution system operational performance. 

Several studies show that the distribution grid can be 

significantly impacted by high penetration levels of PEVs [3-7]. 

The study of the impact of electric vehicle charging profiles 

dates back to the 1980s [3]. In [4], PEV charging control 

strategies are developed to mitigate distribution transformer 

ageing that could result from load peaks caused by PEV 

charging. The impact of uncoordinated PEV charging on 

system peak load, losses, voltage and system load factor are 

discussed in [5] and is noted to have adversely affected the 

efficiency of the distribution grid. It is shown in [6] that a 10% 

penetration of PEV may cause unacceptable variations in 

voltage profiles if there is no regulation on PEV charging, 

while coordinated charging can reduce system peak load, 

losses, and mitigate the impacts of uncoordinated PEV charging 

in the distribution system. The impact of PEV charging on a 

low voltage distribution network for various PEV penetrations 

is discussed in [7]; it is shown that PEV charging can have 

negative impacts in terms of increased peak load, increased 

power losses, overload of transformers and lines, voltage drop 

and increased voltage asymmetry. 

 Integration of DGs and PEVs have also been studied by 

researchers; in [8] an optimal power flow (OPF) based 

framework is used to examine the impact of PEV charging on 

distribution networks considering detailed models of wind and 

solar PV. Other researchers [9], [10] and [11] have also 

examined important aspects of the issue of coordination of DGs 

with PEVs. 

Development of PEV charging load models has also been 

reported extensively in the literature. Monte Carlo simulation is 

used in [12] to generate virtual trip distances which consider 

driving habits, different vehicle models, etc., and hence 

formulate annual energy consumption model of light duty fleet 

of PEVs. Queuing theory [13] based models have been 

proposed in [14]-[18] to model the PEV charging demand. The 

solution of a probabilistic constrained load flow problem with 

wind generation and PEV demand or supply is presented in 

[14] where the charging and discharging processes are 

represented using an M/M/∞ queuing model. A mathematical 

model that covers the spatial and temporal distribution of 

demand, based on fluid dynamic traffic model and queuing 

theory is developed in [15] to estimate the PEV charging 

demand for an electric vehicle charging station (EVCS). In 

[16], a max-weight PEV dispatch algorithm, based on a 

queuing formulation integrated with renewable energy sources 

is used to control the PEV charging in order to avoid costly 

distribution system infrastructure upgrades. In [17], a PEV 

demand model suitable for load flow studies is proposed 

wherein the charging demand is represented as a PQ bus with 

stochastic characteristics based on queuing theory. In [18], four 

different types of PEVs are considered and factors that affect 

their charging behavior, e.g., differences in battery capacity and 

charging level, are discussed. A single PEV charging demand 

model is formulated and queuing theory is used to describe the 

behavior of multiple PEVs. 

From the aforementioned literature review, it can be noted 

that the charging demand at an EVCS is affected by different 

factors, such as the number of PEVs arriving (), number of 

PEVs being charged simultaneously (N), the state of charge 

(SOC) of the battery, charging levels, battery capacity, charging 

duration, etc. Some of these parameters are independent 

processes, such as the arrival rate , and some are dependent on 

the PEV type such as battery capacity, or battery charging 

behavior (BCB), while some others are dependent on the PEV 

driving patterns, such as the SOC, the charging duration, etc. 

Note that, some of the parameters of the EVCS can be 

controlled effectively, such as N, the number of PEVs charging 

simultaneously. However, in order to do so, there is a need to 

effectively model the EVCS load as a function of various input 

parameters and controllable variables. So far, there is no 

reported work that examines how the EVCS load can be 

modeled as a smart load nor any attempt has been made to 

integrate the same within a larger operations framework of the 

distribution system. 

Neural networks (NN) have been widely applied in various 

engineering applications such as system identification, signal 

enhancement, and noise cancellation. The power system 

literature has also seen many applications of NN; for example, 

in [19], the strategies to incorporate a NN-based load model 

into static and dynamic voltage stability are presented. In order 

to provide the forecasted load, NN is used in [20] to learn the 

relationship among past, current and future temperatures and 

loads. One standard application of NN is its use as a function 

approximation tool. 

Moreover, different charging facilities have been studied by 

researchers for example; The day-time charging scenarios for 

PEVs at parking lots are studied in [21] using a two-stage 

approximate dynamic programming framework to determine 

the optimal charging strategies. A case study of a residential 

parking lot charging station [22] examines how many charging 

Downloaded from http://iranpaper.ir



1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2016.2576902, IEEE
Transactions on Smart Grid

 

 

3 

spots can be reduced by encouraging customers to charge at 

off-peak hours, while in [23], an online management strategy is 

proposed that enables aggregators in public parking lots to 

dynamically manage PEV charging to maximize the owners’ 

interest. However, these works consider Level-2 charging only, 

as against Level-3 charging in used in EVCS; and that charging 

at parking lots is carried out during office hours or late evening 

hours (residential lots) considering a specific class of 

customers; while an EVCS is more generic and need to use 

realistic arrival rates from mobility data, over a 24-hour period, 

for a wider range of customer class.  

In the literature, two broad strategies for smart charging of 

PEVs are reported. In decentralized smart charging, the 

charging strategy is determined by individual PEV owners [24] 

while centralized smart charging strategy is generally 

determined by the Local Distribution Company (LDC) 

considering its own objectives and the charging schedule is 

communicated to the PEV owners [25]. In [26] a comparison 

between the centralized and decentralized charging strategies is 

made; and the advantages and disadvantages of each are 

presented. Other researchers [27], [28] and [29] have also 

examined important aspects such as real-time charging 

management for electric vehicles, demand response (DR) in 

smart distribution systems, and responsive end-user-based 

demand side management, respectively.  

This paper presents a novel approach to model the EVCS 

load as smart load by proposing a Charging Station 

Controllable Load Estimator (CSCLE) which comprises a 

queuing model, used to construct the PEV charging data set as 

an input to a NN; and a NN model, to estimate the smart 

charging demand profile of the EVCS as a function of different 

parameters. 

The M1/M2/N queuing model considers the arrival rate of 

PEVs as a non-homogeneous Poisson process based on the 

travel patterns of light-duty vehicles in U.S., obtained from the 

2009 National Household Travel Survey (NHTS) [30]. The 

queuing process integrates the SOC and BCB of the PEV 

battery within the service time. The output dataset of the 

queuing model is used to train the NN, to model the smart 

EVCS load. 

The smart load model of the EVCS obtained from the 

CSCLE is then integrated within an optimal operations model 

of the distribution system that includes some new EVCS related 

control constraints. These comprehensive models of controlled 

Fig.1: Interaction between LDC and EVCS. 

EVCS loads effectively introduce significant flexibility in 

distribution system operations and provide a DR service to the 

LDC. The main contributions of this paper are as follows:  

 The CSCLE is developed using supervised NN learning to 

estimate the smart EVCS load as a function of the number of 

PEVs charging simultaneously, total charging current, PEV 

arrival rate at the EVCS, and time. 

 The training set for the NN is constructed from a M1/M2/N 

queuing model of the EVCS considering realistic arrival rates 

based on NHTS data, various class of PEVs, SOC and BCB 

of the PEV battery. 

 The developed NN based smart load model of the EVCS is 

integrated within a novel distribution operations framework 

that considers PEV smart charging constraints, and EVCS 

related constraints. The smart operational decisions at the 

EVCS are determined from the perspectives of both the LDC 

and the EVCS owner.  

 The EVCS smart charging framework can receive peak 

demand signals from the LDC and accordingly adjust its 

charging schedules to provide a DR service to the LDC. The 

contribution of such smart EVCS loads to DR and their 

integration in the distribution systems operation framework is 

examined. 

 The smart EVCS operations are compared with an 

uncontrolled EVCS, to demonstrate the effectiveness and 

need for such a control scheme in smart grids.  

The rest of this paper is organized as follows. The proposed 

novel framework and mathematical models for developing the 

EVCS smart load model and its integration in the distribution 

operations model are presented in Section III. In Section IV, the 

system description pertaining to the case study carried out, is 

presented. The results and discussions are presented in Section 

V and the concluding remarks in Section VI. 

III. PROPOSED FRAMEWORK AND MATHEMATICAL MODELS 

This paper proposes a smart distribution system operations 

framework including the DR contributions from a smart EVCS. 

The proposed framework is depicted in Fig.1, where the 

queuing model receives inputs from the NHTS dataset in terms 

of PEV class, battery capacity, SOC, etc., to construct the 

output profiles for the number of PEVs charged, total charging 

current, arrival rate, and time. 

The queuing model considers the arrival of PEVs as a non- 
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homogeneous Poisson process and a novel piece-wise linear 

representation of the SOC is used to represent the BCB within 

the charging time in the M1/M2/N queuing model. 

The output profile from the queuing model serves as the 

training and validation data sets for the NN, to express the 

charging power for each class of PEV as a function of these 

parameters. The output of the CSCLE, developed using the 

supervised NN learning is integrated within the novel 

distribution operations model that considers PEV smart 

charging constraints, and EVCS related constraints to 

determine the smart operational decisions of the EVCS while 

considering various distribution operations constraints. As 

shown in Fig.1, the LDC sends a peak demand cap signal to the 

EVCS and which induces a DR services from the latter, 

whereby the PEVs are accordingly scheduled for charging.  

A. Charging Station Controllable Load Estimator (CSCLE) 

The EVCS smart load model is arrived at in two steps, as 

mentioned earlier. In the M1/M2/N queuing model, M1 denotes 

the arrival rate, modeled as non-homogeneous Poisson process 

based on NHTS dataset, M2 denotes the service time of a PEV 

customer modeled using the SOC of the PEV considering the 

BCB, while N is the number of customers being served 

simultaneously. These data sets of PEV charging parameters 

obtained from the queuing model are then used in the second 

step, the NN model, as training and validation datasets to 

express the EVCS load as a function of different parameters. 

The EVCS smart charging load profile considering all PEVs 

belonging to class j, is denoted by Pchj,k and can be expressed 

mathematically as a function of the number of PEVs being 

charged simultaneously (Nj,k), total charging current (Ij,k), 

arrival rate of PEVs at the EVCS (λk), and time (k), as follows:  

),,,( ,,, kINfPch kkjkjkj  .       (1) 

As mentioned earlier, since k is an independent parameter,  

is independent process, and Ij,k depends on the PEV class, the 

EVCS smart load in (1) can be represented as a function of Nj,k 

only, as follows: 

 

),(, kjNfkjPch  .          (2) 

 

From (2), it is evident that once the functional relationship 

between Nj,k and Pchj,k is established using the NN, the EVCS 

smart load can be controlled by appropriate decisions on Nj,k. 

The structure of the feed-forward NN used in this work is 

shown in Fig.2. The NN is trained in MATLAB using the 

Levenberg-Marquardt algorithm for back propagation. While 

training the NN, the entire dataset is divided into three subsets. 

The first subset is the training set, used for computing the 

gradient and updating the network weights and biases. The 

second subset is the validation set, which is used to monitor the 

error during the training process that normally decreases during 

the initial phase of training, as does the training set error. The 

third subset or test set is used to compare different models, 

using the test set error during the training process to evaluate 

the accuracy of the NN model. During the training process NH 

is varied to arrive at the best fit for the PEV charging load 

model. 

 
Fig.2: NN structure as part of CSCLE to determine smart EVCS load model. 

In order to obtain a mathematical function of Pchj,k from the 

trained NN, the output from each hidden layer neuron Hj,k,1 to 

Hj,k,4 for different PEV classes are determined first. The 

incoming inputs with appropriate weights wj,s,r are summed up 

at each hidden layer neuron. Also, each hidden layer neuron has 

an additional input, the bias β1 to β4, which is used in the 

network to generalize the solution and to avoid a zero value of 

the output, even when an input is zero. This summed signal is 

passed through an activation function (tansig) associated with 

each hidden layer neuron, which transforms the net weighted 

sum of all incoming signals into an output signal from the 

hidden layer neuron. Accordingly, 

)
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,2,1,,1,1,1,,

jjkj

kjjkjjkj

kww

IwNwsigH

 


       (3) 

)
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
       (4) 
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jjkj

kjjkjjkj
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 



       

(5) 

 
)

(tan

4,4,4,3,4,

,2,4,,1,4,4,,

jjkj

kjjkjjkj

kww

IwNwsigH

 


.      (6) 

In this work the NN is run for each PEV class individually. 

Finally, Pchj,k can be obtained from the output neuron of the 

trained NN as follows: 

)

(

4,14,,3,13,,

2,12,,1,11,,,





WHWH

WHWHpurelinPch

kjkj

kjkjkj
      (7) 

where purelin is a linear transfer function available in 

MATLAB. 

B. Distribution Operations Model with Controllable EVCS 

After all weights are determined, the distribution operations 

model is formulated by including the EVCS smart load model 

developed from the CSCLE framework, discussed in the 

previous subsection. Some new constraints are necessary to 
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capture the smart charging schedules and the smart EVCS 

operational aspects. 

 

1) Objective Functions 

Two different objective functions are considered, first is the 

minimization of feeder losses, which is the desired objective 

from the perspective of the LDC, and is given as follows: 

  
  
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














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
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1

k i j kikj

kjkikjki
ji

VVVV
GJ


.   (8) 

The second is the maximization of the number of PEVs 

services or charged at the EVCS over a day, representing the 

perspective of the EVCS owner, and is given as follows:          


 



24

1 1

,2

k

J

j

kjNJ .        (9) 

2) Demand Supply Balance 

The demand supply balance for active and reactive power is 

given by the power flow equations, augmented by including the 

total EVCS smart load at the EVCS bus to the active power 

equation, as follows: 

csiiVfPDPG

j

kikikiki  


,),(
BN

1

,,,,        (10) 

   



BN

1

,,,,, ,
j

kcskcskkcskcskcs VfNTPchPDPG   (11) 

iVfQDQG

j

kikikiki  


BN

1

,,,, ),(   (12) 

Where  

   



J

j
kjNkjPchkNkcsTPch

1
,,, .  (13) 

In (13) the total charging power TPchcs,k at the EVCS at hour 

k is the sum of the charging powers of each class of PEVs and 

is included in (11) at the specific bus where the EVCS is 

located. It is to be noted that TPchcs,k is a decision variable, 

unlike most other works, and is optimally determined from the 

model solution, by optimally determining Nk. It is to be noted 

that the PEV charging load has been modeled in this work as 

real power demand only. The PEV battery systems are typically 

considered to be unity power factor loads as per the common 

practice [16], [17], [18]. In some recent works, researchers have 

examined how PEVs can provide reactive power support 

services to the grid through capacitor banks associated with 

PEV batteries and chargers [31], [32], which is however not 

considered in this paper, in order to focus on the stated 

objectives. 

 

3) Controlled Operation of EVCS 

These constraints pertain to EVCS smart operation by 

effective control of the number of PEVs charging 

simultaneously, Nk, number of PEVs waiting for charging, Wk, 

and the number of PEVs rejected for charging, Rk. Accordingly, 

the total number of PEVs charging simultaneously at hour k, is 

given by: 

kRkWkkTN           (14) 

where TNk is the sum of the number of PEVs, across all classes, 

charging simultaneously at hour k, and is given by: 





J

j
kjNkTN

1
, .         (15) 

Also, in (14), Rk is given by: 

)(k
Max

kk WTNR   .     (16) 

The total number of PEVs being charged simultaneously at 

hour k, is constrained by the EVCS capacity, as follows: 

Max
k NTN  .          (17) 

Furthermore, the EVCS may also impose limits on the 

maximum number of PEVs of a particular class that can be 

charged at a time. Hence, the following constraint is imposed: 

Max
jkj NN , .          (18) 

The maximum number of PEVs that can wait for charging at 

hour k, are constrained by the EVCS space availability and is 

given by: 

Max
k WW  .          (19) 

4) Limit on EVCS Peak Demand 

In order to ensure that the EVCS charging demand does not 

create additional peaks in the LDC’s load profile, the following 

constraint is added: 

TPDPDTPD kEVCS  ,  .     (20) 

Where PDEVCS,k denotes the total charging demand of the EVCS 

at hour k, TPD represents the minimum charging load as defined 

in the agreement with the EVCS owner, as a DR provider, 

while, TPD specifies the maximum peak demand of the EVCS 

allowed by the LDC. 

In addition to the above, the system operational constraints 

such as bus voltage limits and substation capacity limits are 

also imposed. The above NLP model is solved using the 

MINOS5.1 solver in GAMS environment. 
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IV. CASE STUDY SYSTEM 

A. Distribution System Topology 

The analysis presented in this paper is carried out 

considering the IEEE 69-bus radial distribution system, whose 

single line-diagram is given in Fig.3 [33]. The distribution 

system is supplied through the substation at bus-1. It is assumed 

that an EVCS is arbitrarily located at bus-59, without any loss 

of generality. 

 
Fig.3:  69-Bus radial distribution system [33]. 

B. NHTS Data and Modeling PEV Arrival Rate 

Since the availability of data pertaining to penetration of 

PEVs and PEV charging load recordings are still very limited, 

NHTS 2009 [30] data for light-duty vehicles is used in this 

work to model the PEV charging demand. The dataset 

comprises information on 12,469 vehicles, of four specific class 

of vehicles- automobile car, sports utility vehicle (SUV), van, 

and pickup truck; with the arrival destination being to buy gas 

at the gas-station, assuming that PEVs have the same pattern 

for arriving at the EVCS for charging their vehicles. 

With this large dataset of information, the arrival rate of 

PEVs is realistically modelled for a large range of customer 

classes; the normalized hourly distribution of PEVs arriving for 

charging is presented in Fig.4. Furthermore, in order to draw 

the correspondence between fuel-driven vehicles and PEVs for 

the data processing work, in this paper, four different PEV 

classes have been used with their appropriate battery sizes to 

match the NHTS classes, as given in Table I. Nevertheless, the 

developed modeling framework is generic and demonstrates its 

effectiveness, and any appropriate realistic arrival rate data 

from an EVCS may be used to determine actual schedules and 

rejections. 

 
TABLE I 

PEV PARAMETERS FOR CHARGING LOAD MODEL 

NHTS Class 
[30] 

Automobile 
Car 

SUV Van Pickup Truck 

PEV Class Compact Economy Mid-size Van Light Truck 

BCap, kWh 8 - 12 10 - 14 14 - 18 19 - 23 

EC, kWh/mile 0.2- 0.3 0.25-0.35 0.35-0.45 0.48-0.58 

DD, miles Lognormal Distribution, M = 40 miles, M = 20 miles 

 

 

 
Fig.4: Arrival rate frequency distribution. 

C. Neural Network 

In this work, the vehicular data for 90 days is used 

considering 24, one-hour time intervals per day. There are four 

input layer neurons corresponding to the four inputs- N, I, , 

and k, and one output layer neuron corresponding to the output 

Pch. The NN has one hidden layer with NH =4, i.e., four hidden 

layer neurons; this was obtained by various trial simulations. 

An input matrix of dimension 4x2160 is created from the 

queuing model simulations, while the output vector is of 

dimension 1x2160. For this study, the data division ratios 

between the training, validation, and test sets are assumed to be 

0.7, 0.15, and 0.15, respectively. 

V. RESULTS AND DISCUSSIONS 

The NN is used to model the controllable EVCS load in 

terms of controllable variables and parameters from the 

perspective of the LDC and the EVCS owner. Four MATLAB 

functions for data division are used to train the NN, as 

discussed earlier, in order to identify the best function to divide 

the data sets into training, validation and testing subsets, and 

the corresponding values of R-squared are compared. The 

estimated total EVCS load, using the proposed NN, is 

compared with that from a PEV charging data set obtained 

from the queuing model and is observed to be very closely 

matching. It is also noted that the function dividerand best 

captures the EVCS charging demand estimate (Fig.5). 

 
Fig.5:  Estimated output using the dividerand function of the NN toolbox.  

A. Controlled Operation of EVCS: LDC Perspective 

This case assumes that the distribution system is operated 

from the LDC’s perspective, and the EVCS smart operation is 

accordingly determined. The typical criterion for LDCs 

operation, as mentioned earlier, is minimization of losses, given 

by (8). Fig.6 presents the optimal number of PEVs to be 

charged, which remains the same with or without consideration 
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of the class capacity constraint (18). It is to be noted that 

although the number of PEVs to be served are optimally 

distributed over the day, a significant number are rejected 

during hours 9-17 when the arrival rate is high, even though the 

EVCS capacity is not reached. This is because of the choice of 

the objective function, i.e., the loss minimization perspective of 

the LDC. Further, when the class capacity constraint (18) is 

considered, although the total number of PEVs being charged 

does not change, it does bring about some changes in the 

number of PEVs of a given class being charged at an hour, as 

seen from Fig.7 and Fig.8.  

 
Fig.6:  Optimal PEV schedule at EVCS, LDC Perspective.  

 
Fig.7:  Optimal number of PEVs served without considering class constraints, 

LDC Perspective.  

 
Fig.8:  Optimal number of PEVs served considering class constraints, LDC 

Perspective. 

 
Fig.9:  Optimal PEV schedule at EVCS considering PMax , LDC Perspective. 

 

Figs.9-12 present the optimal number of PEVs to be charged, 

overall system demand, voltage profile at Bus-59, and PEV 

charging demand at Bus-59 respectively, considering limits on 

the EVCS peak demand (20). This represents a situation in 

smart grid environment, where the LDC sends a peak demand 

signal to the EVCS on an hour-to-hour basis, and the EVCS 

incorporates this control signal as an additional constraint in its 

charging schedule. Essentially the EVCS therefore provides a 

DR service to the LDC. Figs.9-12 demonstrate that the LDC 

can indeed improve system operation, reduce the peak load, and 

alleviate the need for network augmentation in the presence of 

PEV charging loads.   

 
Fig.10: System demand without, with optimal EVCS demand, LDC 

Perspective. 

 
Fig.11: Voltage profile at Bus-59 for controlled EVCS, LDC Perspective. 

 
Fig.12: Total PEV charging demand at Bus-59, LDC Perspective. 

B. Controlled Operation of EVCS: Owner’s Perspective 

This case assumes that the LDC operates the distribution 

system taking into account the interests of the EVCS owner, 

while adhering to system operational constraints. To this effect 

the objective is to maximize the number of PEVs being charged 

simultaneously, given by (9). Fig.13, presents the optimal 

number of PEVs to be charged, with and without the class 

capacity constraint (18). It is noted that N is optimally 

distributed over the day, and the number of PEVs to be served 

is significantly higher as compared to when the LDC operated 

to minimize system losses. 
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It is noted that the EVCS operates at full capacity, i.e., N = 

NMax, during hours 9-17 when the arrival rate is high (Fig.13) 

and the number of vehicles refused charging, is much less. The 

total number of PEVs being served at an hour, with or without 

the class constraint (18) is found to be the same, although the 

class-wise distribution of charging does vary when (18) is 

included, as seen from Fig.14 and 15.  

 
Fig.13:  Optimal PEV schedule at EVCS, Owner’s Perspective.  

 

 
Fig.14:  Optimal number of PEVs served without class constraints, Owner’s 

Perspective. 

 
Fig.15: Optimal number of PEVs served considering class constraints, Owner’s 

Perspective. 
 

Figs.16-19 present the optimal number of PEVs to be 

charged, overall system demand, voltage profile at Bus-59, and 

PEV charging demand at Bus-59, respectively, considering the 

peak demand limit (20). Figs.16 demonstrates that the optimal 

number of PEVs charged is much lower when (20) is included, 

as compared to the case without (20), which results in less 

power drawn by the LDC from the external grid (Fig.17), and 

much improved voltage profiles (Fig.18), and the EVCS 

provides a DR service by reducing it charging demand as seen 

in Fig.19.  

 
Fig.16: Optimal PEV schedule at EVCS, Owner’s Perspective. 

 
Fig.17: System demand without, with optimal EVCS demand: Owner’s 
Perspective. 

 
Fig.18: Voltage profile at Bus-59 for controlled EVCS, Owner’s Perspective. 

 
Fig.19: Total PEV charging demand at Bus-59, Owner’s Perspective. 

 

A comparison of uncontrolled EVCS versus controlled 

EVCS with different objective functions, without and with (20), 

is presented in Table II. The revenue earnings for the EVCS 

(REV) are calculated considering winter Time-of-Use prices 

applicable in Ontario, Canada [34]. It is noted that uncontrolled 

operation of the EVCS accommodates more PEVs for charging 

and hence yields a high revenue (136.7 $/day) for the EVCS, 

but consequently requires much more power drawal from the 

external grid (13.11 p.u.), and results in high system losses 

(0.93 p.u.). 

Controlled operation of the EVCS from the owner’s 

perspective, i.e., with the objective of maximizing N, results in 

a reduction in total number of PEVs charged/day (TN) to 231 

PEVs, as compared to uncontrolled EVCS operation where 294 

PEVs are charged. An increased number of vehicles are kept on 

waiting or are rejected. The EVCS revenue reduces to 99.6 

$/day. When the peak demand constraint (20) is imposed, TN 

further reduces to 171 PEVs, the revenue of EVCS dips to 95.5 

$/day. 

Finally, the controlled operation of the EVCS from the 

LDC’s perspective, i.e., with the objective of minimizing 

losses, results in a further reduction in TN to 152 PEVs without 

(20) and 134 PEVs when (20) is imposed. The EVCS revenue 

reduces to 93.4 $/day. 

It is therefore noted that the EVCS provides a DR service to 

the LDC after a peak demand signal is received, and the EVCS 

incorporates this as an additional constraint (20) in its charging 

schedule. It is noted that the LDC can indeed improve system 

operation, reduce the peak load, and alleviate the need for 

network augmentation in the presence of PEV charging loads 

compared without peak demand constraint scenario for both 

perspectives (Table II).       
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TABLE II 

COMPARISON OF ALL CASES AND SUMMARY BENEFITS 

 

Controlled EVCS 

Uncontrolled 
Objective: Min {Loss} Objective: Max {N} 

No PMax 
constraint 

With PMax 
constraint 

No PMax 
constraint 

With PMax 
constraint 

TN 152 134 231 171 294 

REV 93.8 93.4 99.6 95.5 136.7 

TL 0.335 0.328 0.471 0.391 0.93 

TP 9.27 9.24 9.78 9.44 13.11 

TN:   Total number of PEVs charged/day 
REV:  EVCS revenue, $/day 

TL:  Total system loss, p.u./day 

TP:  Total energy drawn from grid by EVCS, p.u./day 

 

It is noted that controlled operation of the EVCS has some 

impact on the distribution system performance. Fig.20 shows 

that as expected, the total EVCS load is significantly increased 

when the EVCS owner’s perspective (maximizing J2) is 

considered as compared to the LDC’s perspective (minimizing 

J1). The bus voltage profiles are also affected by PEV charging 

(Fig.21). For example, at Bus-59, which is the EVCS bus, 

significant voltage drop takes place at various hours, depending 

on the operations perspective. In case of the EVCS owner’s 

perspective the voltage profiles are significantly deteriorated, 

although they are within the operating limits of 0.95 p.u., while 

in the LDC’s perspective the voltage profile is significantly 

better. A comparison of the controlled EVCS operation from 

both perspectives, at Bus-59, are presented in Fig.22; the 

increase in the demand due to EVCS charging is significant 

considering the owner’s perspective as compared to the LDC’s 

perspective. 

 
Fig.20: Comparison of system demand without and with optimal EVCS 
demand. 

 
Fig.21: Comparison of voltage profile at Bus-59 for controlled EVCS demand. 

 
Fig.22:  Total PEV charging demand at Bus-59 for both perspectives. 

C. Uncontrolled Operation of Charging Station 

This subsection captures the impact of controlled EVCS load 

(modeled as per the proposed approach) and compares that with 

uncontrolled EVCS operation, using the EVCS load estimated 

using the queuing model. Uncontrolled operation of the EVCS 

means, all PEVs arriving for charging, at any time, irrespective 

of the arrival rate, are right away provided a charging service. 

The expected uncontrolled EVCS load (Fig.23) is significantly 

increased depending on the arrival rate of PEVs, as compared 

to the case with no PEV. 

The expected voltage profile at Bus-65 for uncontrolled 

operation of EVCS is given in Fig.24. As expected, the voltage 

profile drops significantly coinciding with the appearance of 

EVCS loads during hours 9–17. While, as noted earlier in the 

LDC controlled operation of EVCS, from either LDC’s or 

EVCS owner’s perspectives, the voltage profiles are 

significantly better (Fig.21). This demonstrates that the LDC 

can easily and smartly accommodate significant amount of 

PEV charging loads considering appropriate control strategies 

for the EVCS. 

 
Fig.23: Expected uncontrolled charging demand. 

 

 
Fig.24: Expected voltage profile at Bus-65 for uncontrolled PEV charging. 

VI. CONCLUSIONS 

This paper presented the comprehensive modeling of EVCS 

load using controllable variables such as- the number of PEVs 

being charged simultaneously, total charging current, arrival 

rate, and time. The work further examined the contribution of 

such smart EVCS loads to DR and their integration in the 

distribution systems operations framework. The controllable 

load profile of EVCS was obtained using the novel framework 

for CSCLE. The CSCLE comprised a queuing model that 

considered several classes of vehicles, arriving at the EVCS as 

a non-homogeneous Poisson process, and determined the 

charging load for each. This dataset was used to train a NN and 

hence to determine the controllable charging load model of the 

EVCS. 
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The charging load model was integrated with a distribution 

optimal operations model to obtain the optimal charging 

decisions for the EVCS. Two different objective functions were 

considered, minimizing total feeder losses which represented 

the LDC’s perspective; and maximizing the number of PEVs 

charged simultaneously, representing the EVCS owner’s 

perspective. A 69-bus distribution system test case was 

presented to study the controlled operation of EVCS loading 

and its contribution to DR service. 

It was noted from the studies that the EVCS owner’s 

objective of maximizing the number of PEVs being charged 

simultaneously, can result in deterioration of bus voltages, and 

high feeder losses while accommodating more PEVs for 

charging, and rejecting only a few. On the other hand, the 

LDC’s perspective of minimizing feeder losses resulted in 

significant rejections and wait times. 
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