
Electrical Power and Energy Systems 74 (2016) 322–328
Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier .com/locate / i jepes
A nonlinear control method for price-based demand response program
in smart grid
http://dx.doi.org/10.1016/j.ijepes.2015.07.024
0142-0615/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +86 03357939689.
E-mail addresses: jyang.tju@gmail.com (J. Yang), Zhanggs@tju.edu.cn (G. Zhang),

kma@ysu.edu.cn (K. Ma).
Jie Yang a,⇑, Guoshan Zhang b, Kai Ma a

a School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
b School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 10 July 2014
Received in revised form 27 May 2015
Accepted 21 July 2015
Available online 21 August 2015

Keywords:
Smart grid
Demand response
Power management system
Nonlinear control
Disturbances
This paper proposes a price-based demand response program by the nonlinear control method. The
demand response program is formulated as a nonlinear power management system with price feedback.
We give the conditions of the price parameters for both the global asymptotic stability of the system and
the social welfare optimality of the equilibrium point. Furthermore, the system is shown to be
input-to-state (ISS) stable when there are additive disturbances on the power measurements and the
price, and the discrete-time implementation of the power management system is given. Simulation
results demonstrate the balance between supply and demand and the stability of the system with and
without disturbances.
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1. Introduction

Smart grid is an intelligent power system that integrates
advanced control, communications, and sensing technologies into
the power grid [1]. In smart grid, demand response can motivate
customers to shift their loads from on-peak to off-peak periods
[2]. It is widely accepted that demand response is a more
cost-effective way than providing enough generation capabilities
to meet the peak load [3–7]. In general, there are two categories
of demand response programs: incentive-based programs and
price-based programs. The incentive-based programs include the
direct load control program, the emergency demand response pro-
gram, and the ancillary services market. For the price-based pro-
grams, the utilities can change the power consumption of
customers by pricing, such as time of use (TOU), critical peak pric-
ing (CPP), extreme day CPP (ED-CPP), extreme day pricing (EDP),
and real-time pricing (RTP) [8]. Smart grid increases the opportuni-
ties for demand response by providing real-time data to providers
and customers. In smart grid, the price can be provided to the cus-
tomers in real time. For example, the electricity provider
announces electricity prices on a rolling basis in the RTP program,
and the price for a given time period (e.g., an hour) is determined
and published before the start of the period (e.g., 15 min
beforehand).

There exist a number of literature on the price-based demand
response programs. Different demand response programs were
developed based on game theory [9–11], stochastic optimization
[12,13], intelligent optimization [14], and dual decomposition
method [15,16]. The social welfare maximization was achieved
by optimizing the individual utilities of the customers in the
demand response program based on dual decomposition. Then, a
distributed power control algorithm was proposed for demand
response with communication loss [17]. The works mentioned
above assumed that the price is adjusted according to a pricing
algorithm instead of an explicit pricing function. Recently, a linear
pricing function was developed to achieve the balance between
supply and demand for smart grid [18,19], and a nonlinear pricing
function was used to design a distributed demand response
algorithm [20]. Nevertheless, few works are devoted to the social
optimality of the distributed power control under nonlinear
pricing function and the influence of the disturbances on the power
control algorithm.

In this study, we use a quadratic pricing function and establish
the conditions on the social optimality of the distributed power
control algorithm. Due to the unavoidable disturbances on power
systems, we further consider the distributed power control with
additive disturbances on the power measurements and the price.
The differences between our work and the other smart grid
algorithms are shown in Table 1. To the best of our knowledge,
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Table 1
Comparisons with other smart grid algorithms.

Pricing function Disturbances Social optimality

[11,18,19] Linear � �
[9,20] Nonlinear � �
[15,16] � � p

[17] � Communication loss
p

Our work Nonlinear Additive errors
p

Fig. 1. Smart power system.
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Fig. 2. Utility functions with different willingness parameters.

J. Yang et al. / Electrical Power and Energy Systems 74 (2016) 322–328 323
the social optimality of the distributed power control under the
nonlinear pricing function and the influence of the disturbances
on the power control algorithm have not been studied. The main
contributions are as follows.

� The price-based demand response program is formulated as a
nonlinear power management system.
� The condition is established for the equivalence of the equilib-

rium point of the system and the optimal solution of a social
welfare maximization problem.
� The proof of the stability is given for the power management

system with and without disturbances on the power measure-
ments and the price.

The rest of the paper is organized as follows. In Section 2, the
demand response program is formulated as a nonlinear power
management system. In Section 3, the conditions of the price
parameters are established for both the global asymptotic stability
of the system and the social welfare optimality of the equilibrium
point. In Section 4, the input-to-state (ISS) stability is shown for the
system with disturbances on the power measurements and the
price. The discrete-time implementation of the power manage-
ment system is proposed in Section 5, and the simulation results
are given in Section 6. Finally, conclusions are summarized in
Section 7.

2. System model

As shown in Fig. 1, we consider a smart power system consist-
ing of one electricity provider and N customers. The operation
cycle of the power system is divided into several time slots. In each
time slot, the electricity provider decides the electricity price and
announces it to the customers. Then, the customers manage their
power consumption according to the announced price.1 We employ
the utility functions to characterize the profits of the customers [21].
A quadratic utility function with linear decreasing marginal benefit
is defined as

UiðxiÞ ¼
xixi � a

2 x2
i ; if 0 6 xi 6

xi
a ;

x2
i

2a ; if xi >
xi
a ;

(
ð1Þ

where xi is the power consumption of customer i ði 2 f1;2; . . . ;NgÞ,
xi (xi > 0) denotes the willingness to increase the power consump-
tion, and xi=a denotes the maximum demand of customer i. For
instance, the utility functions with different willingness parameters
are shown in Fig. 2. The quadratic utility function indicates that a
customer is willing to choose larger power consumption with
xi=a as the saturation value.

In general, the objective of demand response is to maximize the
social welfare [22], which can be formulated as the following opti-
mization problem:
1 This assumption is for the economical theoretical behavior of the customers and
is commonly used in other papers that studies price-based demand response, such as
[9–11,15–20].
ðP1Þ : max
X
i2N

UiðxiÞ

s:t:
X
i2N

xi ¼ Q ;

where Q denotes the power supply. The constraint in (P1) indicates
that the total power consumption should match with the power
supply. The optimization problem (P1) is a convex optimization
problem and can be solved by the following primal algorithm [23]:

_xi ¼ kiðxi � axi � pðxÞÞ; i 2 N ; ð2Þ

where ki is the control gain, pðxÞ is the pricing function of the elec-
tricity provider, and x ¼ ðx1; . . . ; xNÞT denotes the set of power con-
sumption of all the customers. In this study, we select the quadratic
pricing function:

pðxÞ ¼ b
X
i2N

xi

 !2

þ c
X
i2N

xi; ð3Þ

where b and c are positive price parameters. Eqs. (2) and (3) can be
integrated in a nonlinear power management system, as shown in
Fig. 3.
3. Stability and optimality

In this section, we will study the stability of the power manage-
ment system (2) and (3). Before the proof, the definition of global
asymptotic stability is given.
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Fig. 3. Nonlinear power management system.
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Definition 1 (Stability [24]). Let x ¼ 0 be an equilibrium point for
_x ¼ f ðxÞ with xð0Þ ¼ x0. The equilibrium point x ¼ 0 of _x ¼ f ðxÞ is
said to be globally asymptotically stable if limt!1kxðtÞk ¼ 0 for all
initial conditions x0.
Theorem 1. The power management system (2) and (3) are globally
asymptotically stable if

a > ðN � 2Þ 2b
X
i2N

xi þ c

 !
: ð4Þ
Proof. Let /ðxÞ ¼ _x, where /ðxÞ ¼ /1ðxÞ; . . . ;/NðxÞð Þ and
_x ¼ _x1; . . . ; _xNð Þ. Define a Lyapunov candidate function as

VðxÞ ¼ 1
2

/TðxÞ/ðxÞ; ð5Þ

where VðxÞ is strictly positive for all x, except for x ¼ x�. The time
derivative of VðxÞ is obtained as

_VðxÞ ¼
X
i2N
ð/iðxÞ � _/iðxÞÞ ¼

X
i2N

/iðxÞ �
X
j2N

@/iðxÞ
@xj

� _xj

 !

¼
X
i2N

/iðxÞ �
X
j2N

@/iðxÞ
@xj

� /jðxÞ
 !

¼ /TðxÞJ/ðxÞ; ð6Þ

where J is the Jacobian matrix of /ðxÞ and can be defined as

J ¼

�a� 2br� c �2br� c . . . �2br� c

�2br� c �a� 2br� c . . . �2br� c

..

. ..
. . .

. ..
.

�2br� c �2br� c . . . �a� 2br� c

2
66664

3
77775; ð7Þ

where r ¼
P

i2N xi. Combining with (4), J is a diagonally dominant
matrix with Jii < 0. Following the Gershgorin’s theorem [25], J is a
negative definite matrix, and the power management system (2)
and (3) are globally asymptotically stable by the Lyapunov stability
theorem. h

Next, we will give the conditions of the price parameters to
guarantee the equivalence of the equilibrium point of the power
management system and the optimal solution of (P1).

Theorem 2. The equilibrium point of the power management system
(2) and (3) is the optimal solution of (P1) ifX
i2N

xi ¼ NbQ2 þ ðNc þ aÞQ : ð8Þ
Proof. The equilibrium point of the system is obtained from the
following equations:

xi � axi � b
X
i2N

xi

 !2

� c
X
i2N

xi ¼ 0; i 2 N : ð9Þ
Adding the two sides of (9) from 1 to N, yields

X
i2N

xi ¼
�ðNc þ aÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNc þ aÞ2 þ 4Nb

P
i2N xi

q
2Nb

: ð10Þ

Combining with (8), the equilibrium point of the power manage-
ment system (2) and (3) satisfiesX

i2N
xi � Q ¼ 0;

xi � axi ¼ bQ2 þ cQ ; i 2 N :

8<
: ð11Þ

Defining k ¼ bQ2 þ cQ , we haveX
i2N

xi � Q ¼ 0;

xi � axi ¼ k; i 2 N ;

8<
: ð12Þ

which is the sufficient and necessary condition for the optimality of
the convex optimization problem (P1) [26], where k is the Lagran-
gian multiplier of the following Lagrangian function:

Lðx; k; mÞ ¼
X
i2N

UiðxiÞ � k
X
i2N

xi � Q

 !
; ð13Þ

Therefore, the equilibrium point of the power management system
(2) and (3) is the optimal solution of (P1). h
4. Power management system with additive disturbances

In reality, the power measurements and the price are not accu-
rate due to the errors in the two-way communications between the
electricity provider and the customers. It is necessary to study the
impact of disturbances on the power management system. As
shown in Fig. 4, d1 and d2 denote the additive disturbances on
the price and the total power consumption, respectively. Then,
the power control algorithm with disturbances is denoted as

_xi ¼ kiðxi � axi � pðxÞ þ d1Þ; i 2 N ; ð14Þ

and the electricity price with disturbances is denoted as

pðxÞ ¼ b
X
i2N

xi þ d2

 !2

þ c
X
i2N

xi þ d2

 !
: ð15Þ

Next, we study the ISS stability for the power management sys-
tem with additive disturbances and denote pðxÞ as p for short.
Before the proof, we first give the following lemma:

Lemma 1 (ISS Stability [24]). Support that W : ½0;1Þ ! R satisfies

DþWðtÞ 6 �aWðtÞ þ bðtÞ; ð16Þ

where Dþ denotes the upper Dini derivative, a is a positive constant,
and b 2 Lp;p 2 ½1;1Þ. Then

kWðtÞkLp
6 ðahÞ�1=hWð0Þ þ ðagÞ�1=gkbkLp

; ð17Þ

where h is the complementary index of g. When p ¼ 1, the following
estimate holds:

kWðtÞk 6 e�atkWð0Þk þ a�1kbkL1 : ð18Þ
Then, we obtain the following theorem:
Theorem 3. The power management system (14) and (15) are
input-to-state stable, yields

k~xkLp
6

ffiffiffi
�k

p
ða1hÞ�1=h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~xð0ÞTK�1~xð0Þ

q
þ

ffiffiffiffiffiffi
2�k

p
ða1gÞ�1=gb1; ð19Þ

j~pj 6 n
ffiffiffiffi
N
p
k~xkLp

þ nd2; ð20Þ
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Fig. 4. Power management system with additive disturbances.
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where

~x ¼ x� x�;
~p ¼ p� p�;
K ¼ diagfk1; . . . ; kNg;
a1 ¼ ak;

b1 ¼

ffiffiffiffiffiffi
N�k
2

s
ðnd2 þ d1Þ;

�k ¼max
i
fkig;

k ¼min
i
fkig;

n ¼ f
x
a

� �
; x ¼ ðx1; . . . ;xNÞT ;

and g and h are complementary indices, gives

g�1 þ h�1 ¼ 1;

when Lp ¼ L1, the system satisfies the ISS estimate

k~xðtÞk 6
ffiffiffi
�k

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~xð0ÞTK�1~xð0Þ

q
e�a1t þ

ffiffiffiffiffiffi
2�k

p
b1=a1: ð21Þ
Proof. Consider the Lyapunov candidate function:

V ¼ 1
2

~xTK�1~x: ð22Þ

The derivative of V along the trajectories of (14) is denoted as

_V 6 ~xTðx� ax� qÞ; ð23Þ

where q ¼ RTðp� d1Þ and R ¼ ½1;1; . . . ;1�1�N . Adding and subtract-
ing ~xTq� from the right-hand side of (23), we obtain

_V 6 �a~xT~x� ~xTðq� q�Þ: ð24Þ

Combining with q ¼ RTðp� d1Þ, we have

_V 6 �a~xT~x� ~xTðRTðp� d1Þ � RTp�Þ

¼ �ak~xk2 � ~xTRTðf ðRxþ d2Þ � f ðRx�Þ � d1Þ: ð25Þ

Next, adding and subtracting ~xTRTf ðRxÞ from the right-hand side of
(25), we obtain

_V 6 �ak~xk2 � ~xTRTðf ðRxÞ � f ðRx�ÞÞ � ~xTRTðf ðRxþ d2Þ

� f ðRxÞÞ þ ~xTRTd1

6 �ak~xk2 þ kRkk~xkðnd2 þ d1Þ

6 �2akV þ
ffiffiffi
2
p
kRk

ffiffiffi
�k

p
ðd2 þ d1Þ

ffiffiffiffi
V
p
¼ �2a1V þ 2b1

ffiffiffiffi
V
p

: ð26Þ

The inequality in (26) is obtained by the mean value theorem [27].
Setting W ¼

ffiffiffiffi
V
p

, we obtain

DþW 6 �a1W þ b1; ð27Þ

which, from Lemma 1, implies that

kWkLp
6 ða1hÞ�1=hkWð0Þk þ ða1gÞ�1=gb1; ð28Þ
and

kWðtÞk 6 e�a1tkWð0Þk þ b1=a1: ð29Þ

The inequalities (19) and (21) follow from (28) and (29), and

k~xðtÞk 6
ffiffiffiffiffiffi
2�k

p
kWðtÞk: ð30Þ

Likewise, the inequality (20) follows from the inequality

j~pj 6 n
ffiffiffiffi
N
p
k~xk þ nd2; ð31Þ

upon taking the Lp-norm and applying the triangle inequality to the
right-hand side. h
5. Discrete-time implementation

From the viewpoint of implementation, the discrete-time coun-
terparts of the power control algorithm are considered. The
discrete-time control algorithm without disturbances is given as

xiðmþ 1Þ ¼ xiðmÞ þ lðxi � axiðmÞ � pðmÞÞ; ð32Þ

pðmþ 1Þ ¼ b
X
i2N

xiðmÞ
 !2

þ c
X
i2N

xiðmÞ; ð33Þ

and the discrete-time control algorithm with disturbances is
denoted as

xiðmþ 1Þ ¼ xiðmÞ þ lðxi � axiðmÞ � pðmÞ þ d1Þ; ð34Þ

pðmþ 1Þ ¼ b
X
i2N

xiðmÞ þ d2

 !2

þ c
X
i2N

xiðmÞ þ d2

 !
: ð35Þ

In practice, the electricity provider sets the electricity price
according to the forecast demand and announces the price to the
customers. Each customer manages its power consumption
according to the announced price. Then, the electricity provider
updates the price based on the total power consumption.

The flow chart of the demand response program is shown in
Fig. 5, and the program is executed with the following steps:

Step 1: The electricity provider sets the initial electricity price
according to the forecast demand and then announces it to
the customers.
Step 2: The customers adjust their power consumption accord-
ing to (34). Defining a small positive scalar d, the demand
response program is turned to step 3 if jxiðmþ 1Þ � xiðmÞj > d
for any i ¼ 1;2; . . . ;N. Otherwise, the demand response program
is terminated.
Step 3: The electricity provider updates the electricity price
according to (35) and then announces the updated price to
the customers. Then, the demand response program is turned
to step 2.

The implementation of the distributed power control algorithm
(34) and (35) are shown in Fig. 6. Specifically, the electricity provi-
der collects the power consumption and announces the price to the
customers based on remote meter reading system, and the additive
disturbances denote the errors in the remote meter readings and
published price. The data aggregate units (DAU) are deployed as
gateways to forward the meter readings and the price.

6. Numerical results

In the simulations, we consider a residential power system
composed of ten customers and one electricity provider. The power
supply Q is varying from 10 kW to 42 kW. The parameters a and b
are set to 3.3 and 0.01, respectively. The step size l is 0.07. The
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Fig. 5. Flow chart of the demand response program.
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willingness parameter xi is randomly selected from [20,25]. The
electricity prices in different time slots are shown in Fig. 7 for
the power management system with and without disturbances.
We observe that the disturbances cause errors to the electricity
price. As shown in Fig. 8, the total power consumption (TPC)
matches exactly with the power supply across different time slots
in a day when there are no disturbances. However, the TPC will
deviate from the power supply when there exist some disturbances
on the power measurements and the electricity price. It is con-
cluded that the inaccurate price will further result in the deviations
Customer

Customer

DAU

Customer

Customer

Customer

Customer

Customer

Customer

DAU

Fig. 6. Implementation in the real
of the TPC from the power supply. To study the impact of the dis-
turbances on the deviations, we define the average deviation of the
TPC in a day as

Dc ¼
P24

t¼1jQ
t �
P

i2N xt
i j

24
; ð36Þ

and define the average deviation of the electricity price in a
day as

Dp ¼
P24

t¼1jpt
o � pt

dj
24

; ð37Þ
Customer

Customer

Customer

Customer

Electricity provider

DAU

demand management system.
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Table 2
Performances of power consumption control with and without disturbances.

DPC (kW h) DAP (cents/kW h) PAR

Disturbances 530.0 16.5 1.8
No disturbances 528.4 16.5 1.7
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Fig. 10. Convergence of power control algorithm without disturbances.
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where t denotes the time slot in a day, xt
i is the power consumption

of customer i in time slot t;pt
o is the electricity price without distur-

bances, and pt
d is the electricity price with disturbances. From the

definitions (36) and (37), we obtain Dc ¼ 0:64 and Dp ¼ 0:21.
The social welfare (i.e.,

P
i2N UiðxiÞ) obtained from the power

management system is given in Fig. 9. It is shown that the social
welfare obtained from the power management system achieves
the optimal value of (P1), and the disturbances will result in the
deviations of the social welfare from the optimal value.

To characterize the peak load shifting in a day, the
peak-to-average ratio (PAR) [9] is defined as

PAR ¼ 24maxt2f1;...;24g
P

i2N xt
iP24

t¼1

P
i2N xt

i

;

and the daily average price (DAP) is defined as

�p ¼
P24

t¼1pt P
i2N xt

i

� �
P24

t¼1

P
i2N xt

i

;

where pt is the electricity price in time slot t. We compare the daily
power consumption (DPC), the DAP, and the PAR in Table 2. The
results demonstrate that the disturbances make no change to the
DAP but increase the DPC and the PAR.

The convergence of the power control algorithms without and
with disturbances are shown in Figs. 10 and 11, respectively. The
convergence of price in such two cases are shown in Fig. 12. It is
observed that both the power consumption and the price can con-
verge within 30 iterations. Typically, the disturbances incur longer
settling time and larger overshoot in the adjustment of the power
consumption and the price.
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7. Conclusion

This paper uses a nonlinear control method to generate a
price-based demand response program. The demand response pro-
gram is formulated as a nonlinear power management system, and
the stability is shown for the system with and without distur-
bances. It is shown that the power management system can match
supply with demand when there are no disturbances, and the dis-
turbances will result in the errors in electricity price and the
matching errors between supply and demand. This further
degrades the transient performance of the system. In the future,
we will consider the demand response program with renewable
energy supplies, which will generate a stochastic power manage-
ment system. Further results should be given for the stability of
the stochastic system with and without disturbances.
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