

Complete pivoting strategy for the left-looking Robust Incomplete Factorization preconditioner

Amin Rafiei ${ }^{\text {a,* }}$, Behnaz Tolue ${ }^{\text {b }}$, Matthias Bollhöfer ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Applied Mathematics, Hakim Sabzevari University, Sabzevar, Iran
${ }^{\mathrm{b}}$ Department of Pure Mathematics, Hakim Sabzevari University, Sabzevar, Iran
${ }^{\text {c }}$ Institute of Computational Mathematics, Technische Universität Braunschweig, Braunschweig, Germany

A RTICLE INFO

Article history:

Received 25 July 2013
Received in revised form 18 March 2014
Accepted 21 April 2014
Available online xxxx

Keywords:

Krylov subspace methods
Preconditioning
Pivoting
Left-looking version of RIF preconditioner

Abstract

In this paper, we have used a complete pivoting strategy to compute the left-looking version of RIF preconditioner. This pivoting is based on the complete pivoting strategy of the IJK version of Gaussian Elimination process. There is a parameter α to control the pivoting process. To study the effect of α on the quality of the left-looking version of RIF preconditioner with complete pivoting strategy, we have used ten different values of this parameter. In the numerical experiments section, the quality of the left-looking version of RIF preconditioner with complete pivoting strategy has been compared to the quality of the right-looking version of this preconditioner.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the linear system of equations of the form

$$
\begin{equation*}
A x=b \tag{1}
\end{equation*}
$$

where the coefficient matrix $A \in \mathbb{R}^{n \times n}$ is nonsingular, large, sparse and nonsymmetric and also $x, b \in \mathbb{R}^{n}$. Krylov subspace methods can be used to solve this system [1].

An implicit preconditioner M for system (1) is an approximation of matrix A, i.e., $M \approx A$. If M is a good approximation of A, then it can be used as the right preconditioner for system (1). In this case, instead of solving system (1), it is better to solve the right preconditioned system

$$
A M^{-1} u=b ; \quad x=M^{-1} u
$$

[^0]
[^0]: * Corresponding author.

 E-mail addresses: rafiei.am@gmail.com, a.rafiei@hsu.ac.ir (A. Rafiei), b.tolue@gmail.com, b.tolue@hsu.ac.ir (B. Tolue), m.bollhoefer@tu-bs.de (M. Bollhöfer).

 URLs: http://profs.hsu.ac.ir/rafiei (A. Rafiei), http://profs.hsu.ac.ir/tolue (B. Tolue), http://www.icm.tu-bs.de/~bolle (M. Bollhöfer).
 http://dx.doi.org/10.1016/j.camwa.2014.04.013
 0898-1221/© 2014 Elsevier Ltd. All rights reserved.

