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We present an incomplete UL (IUL) decomposition of matrixAwhich is extracted as a by-product
of BFAPINV (backward factored approximate inverse) process. We term this IUL factorization as
IULBF. We have used ILUFF [3] and IULBF as left preconditioner for linear systems. Different ver-
sions of ILUFF and IULBF preconditioners are computed by using different dropping techniques.
In this paper, we compare quality of different versions of ILUFF and IULBF preconditioners.

1. Introduction

Consider the linear system of equations

AX = b, (1.1)

where the coefficient matrixA ∈ Rn×n is nonsymmetric, nonsingular, large, sparse, and X, b ∈
Rn. Suppose M ≈ A. Linear system

M−1AX = M−1b, (1.2)

is termed left preconditioned system of system (1.1) and matrix M is called left
preconditioner matrix [1]. System (1.2) is solved by Krylov subspace methods [1].

Suppose that matrix A is nonsymmetric. Also, suppose that W = [wT
1 , . . . , w

T
n]

T

and Z = [z1, . . . , zn] are unit lower and upper triangular matrices, respectively, and
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D = diag(d1, . . . , dn) is a diagonal matrix. FFAPINV (forward factored approximate inverse)
Algorithm [2], computes matrices W , Z, and D such that relation

WAZ ≈ D, (1.3)

holds. It is possible to obtain an incomplete LU (ILU) decomposition of matrix A, as a by-
product of FFAPINV process, such that L is an unit lower triangular and U is an upper
triangular matrix and

A ≈ M = LU. (1.4)

Matrix M in (1.4) is called ILUFF preconditioner (ILU factorization obtained from forward
factored approximate inverse process) [3]. The approximate inverse factors W , Z and D in
(1.3) and L,U matrices in (1.4) satisfy the two following relations:

L ≈ W−1, U ≈ DZ−1. (1.5)

In Algorithms 1 and 2, A:,j and Aj,: refer to jth column and jth row of matrix A, respectively.
In Section 2 of this paper, we present different dropping strategies for W , Z and L,

U factors of ILUFF preconditioner. In Section 3, we first introduce the IULBF preconditioner
and then, we present different dropping strategies for this preconditioner. In Section 4, we
present numerical results.

2. Different Versions of ILUFF Preconditioner

Algorithm 1,which has been presented in the next page, computes the ILUFF preconditioner.
Suppose that εZ and εW are the drop tolerance parameters for Z and W matrices,

respectively. We have used two strategies to drop entries of zj and wj vectors in ILUFF
algorithm.

(i) First Dropping Strategy

In this strategy, only line 8 of Algorithm 1 will be run and line 10 will not. In this case, entries
zlj and wjl, for l ≤ i < j are dropped when

∣
∣zlj

∣
∣ ≤ εZ,

∣
∣wjl

∣
∣ ≤ εW. (2.1)

(ii) Second Dropping Strategy

In this strategy, only line 10 of Algorithm 1 will be run and line 8 will not. In this case, the
whole vectors zj and wj are computed as

zj = ej −
j−1
∑

i=1

(
wiA:,j

di

)

zi, wj = eTj −
j−1
∑

i=1

(
Aj,:zi

di

)

wi, (2.2)

and then, entries wjl and zlj , for l ≤ j, are dropped when criterions (2.1) are satisfied.
We have used two strategies to drop entries of L and U matrices in ILUFF algorithm.
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(1) w1 = eT1 , z1 = e1, d1 = a11.
(2) for j = 2 to n do
(3) wj = eTj , zj = ej .
(4) for i = 1 to j − 1 do

(5) Lji =
Aj,:zi

di
, Uij =

wiA:,j

di
(6) apply a dropping rule to Lji and to Uij

(7) zj = zj −
(
wiA:,j

di

)

zi, wj = wj −
(
Aj,:zi

di

)

wi

(8) for all l ≤ i apply a dropping rule to zlj and to wjl

(first format of dropping forW and Z)
(9) end for
(10) for all l ≤ j apply a dropping rule to zlj and to wjl

(second format of dropping forW and Z)
(11) dj = wjA:,j (if A is not positive definite)
(12) dj = wjAwT

j (if A is positive definite)
(13) end for
(14) Return L = (Lij) and U = (diUij)

Algorithm 1: ILUFF algorithm.

(1) wn = eTn , zn = en, dn = ann.
(2) for j = n − 1 to 1 do
(3) wj = eTj , zj = ej .
(4) for i = j + 1 to n do

(5) Uji =
Aj,:zi

di
, Lij =

wiA:,j

di
(6) apply a dropping rule toUji and to Lij

(7) zj = zj −
(
wiA:,j

di

)

zi, wj = wj −
(
Aj,:zi

di

)

wi

(8) for all l ≥ i apply a dropping rule to zlj and to wjl

(first format of dropping forW and Z)
(9) end for
(10) for all l ≥ j apply a dropping rule to zlj and to wjl

(second format of dropping forW and Z)
(11) dj = wjA:,j (if A is not positive definite)
(12) dj = wjAwT

j (if A is positive definite)
(13) end for
(14) Return L = (djLij) and U = (Uij)

Algorithm 2: IULBF algorithm.

(i) Inverse-Based Dropping Strategy

Let εL,W be the same drop tolerance parameter for L and W matrices and εU,Z be the same
drop tolerance parameter forU and Z matrices. Consider εL,W as εW and εU,Z as εZ. We drop
entries zlj and wjl, for l ≤ i < j, when criterions (2.1) hold. Then, in line 6 of Algorithm 1,
entries Lji and Uij , for i < j, are dropped when

∣
∣Lji

∣
∣‖Wi,:‖1 ≤ εL,W,

∣
∣Uij

∣
∣‖Z:,i‖∞ ≤ εU,Z. (2.3)
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(ii) Simple Dropping Strategy

Let εL and εU be the drop tolerance parameters for L andUmatrices. In line 6 of Algorithm 1,
entries Lji and Uij , for i < j, are dropped when

∣
∣Lji

∣
∣ ≤ εL,

∣
∣Uij

∣
∣ ≤ εU. (2.4)

Different versions of ILUFF preconditioners are computed by using different dropping
strategies in Algorithm 1.

(i) ILUFF1

In Algorithm 1, first dropping strategy is used to drop entries ofW andZmatrices and simple
dropping strategy is used to drop entries of L andU matrices.

(ii) ILUFF2

In Algorithm 1, first dropping strategy is used to drop entries of W and Z matrices and
inverse-based dropping strategy is used to drop entries of L and U matrices.

(iii) ILUFF3

In Algorithm 1, second dropping strategy is used to drop entries of W and Z matrices and
simple dropping strategy is used to drop entries of L and U matrices.

(iv) ILUFF4

In Algorithm 1, second dropping strategy is used to drop entries of W and Z matrices and
inverse-based dropping strategy is used to drop entries of L and U matrices.

3. IULBF Preconditioner and Its Different Versions

Suppose that W = [wT
1 , . . . , w

T
n]

T and Z = [z1, . . . , zn] are unit upper and lower triangular
matrices, respectively, and D = diag(d1, . . . , dn) is a diagonal matrix. BFAPINV algorithm
[2, 4] computes matrices W , Z, and D such that relation (1.3) holds. We obtain an IUL
decomposition of matrix A, as a by-product of BFAPINV process, such that L is a lower
triangular and U is an unit upper triangular matrix and

A ≈ M = UL. (3.1)

Matrix M in relation (3.1) is called IULBF preconditioner (IUL factorization obtained
from backward factored approximate inverse process). Algorithm 2 computes the IULBF
preconditioner. The approximate inverse factors W , Z, and D in (1.3) and L, U matrices in
(3.1) satisfy the two following relations:

U ≈ W−1, L ≈ DZ−1. (3.2)
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Suppose that εZ and εW are the drop tolerance parameters for Z and W matrices,
respectively. We have used two strategies to drop entries of zj and wj vectors in IULBF
algorithm.

(i) First Dropping Strategy

In this strategy, only line 8 of Algorithm 2 will be run and line 10 will not. In this case, entries
zlj and wjl, for j < i ≤ l are dropped when criterions

∣
∣zlj

∣
∣ ≤ εZ,

∣
∣wjl

∣
∣ ≤ εW, (3.3)

hold.

(ii) Second Dropping Strategy

In this strategy, only line 10 of Algorithm 2 will be run and line 8 will not. In this case, the
whole vectors zj and wj are computed as

zj = ej −
n∑

i=j+1

(
wiA:,j

di

)

zi, wj = eTj −
n∑

i=j+1

(
Aj,:zi

di

)

wi, (3.4)

and then, entries wjl and zlj , for l ≥ j, are dropped when criterions (3.3) are satisfied.
We have used two strategies to drop entries of L and U matrices in IULBF algorithm.

(i) Inverse-Based Dropping Strategy

Let εU,W be the same drop tolerance parameter for U and W matrices and εL,Z be the same
drop tolerance parameter for L and Z matrices. Consider εU,W as εW and εL,Z as εZ. We drop
entries zlj and wjl, for j < i ≤ l, when criterions (3.3) hold. Then, in line 6 of Algorithm 2,
entries Lij and Uji, for i > j, are dropped when

∣
∣Lij

∣
∣‖Z:,i‖∞ ≤ εL,Z,

∣
∣Uji

∣
∣‖Wi,:‖1 ≤ εU,W. (3.5)

(ii) Simple Dropping Strategy

Let εL and εU be the drop tolerance parameters for L andUmatrices. In line 6 of Algorithm 2,
entries Lij and Uji, for i > j, are dropped when

∣
∣Lij

∣
∣ ≤ εL,

∣
∣Uji

∣
∣ ≤ εU. (3.6)

Different versions of IULBF preconditioner are computed by using different dropping
strategies in Algorithm 2.

(i) IULBF1

In Algorithm 2, first dropping strategy is used to drop entries ofW andZmatrices and simple
dropping strategy is used to drop entries of L andU matrices.
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Table 1: Information of GMRES(16) method without preconditioning and matrix properties.

Matrix n nnz PD Itime it

hor-131 434 4182 No 67.594 4273
sherman2 1080 23094 No + +
cavity05 1182 32632 No 0.875 27
cavity06 1182 29675 No + +
sherman4 1104 3786 No 0.531 23
epb0 1794 7764 No + +
pde2961 2961 14585 yes 0.734 18

(ii) IULBF2

In Algorithm 2, first dropping strategy is used to drop entries of W and Z matrices and
inverse-based dropping strategy is used to drop entries of L and U matrices.

(iii) IULBF3

In Algorithm 2, second dropping strategy is used to drop entries of W and Z matrices and
simple dropping strategy is used to drop entries of L and U matrices.

(iv) IULBF4

In Algorithm 2, second dropping strategy is used to drop entries of W and Z matrices and
inverse-based dropping strategy is used to drop entries of L and U matrices.

4. Numerical Results

In this section, we report results of left preconditioned GMRES(16) method [1]. Precon-
ditioners are ILUFF1, ILUFF2, ILUFF3, ILUFF4, IULBF1, IULBF2, IULBF3, and IULBF4.
All coefficient matrices are nonsymmetric and from University of Florida Sparse Matrix
Collection [5]. Vector b is Ae in which e = [1, . . . , 1]T . We have written codes of ILUFF1,
ILUFF2, ILUFF3, ILUFF4, IULBF1, IULBF2, IULBF3, IULBF4, and GMRES(16) in MATLAB,
and we have run all the experiments on a machine with 1GB of RAM memory. In all the
experiments, if the pivot element dj (lines 11 and 12 of ILUFF and IULBF algorithms) is less
than the machine precision, then we replace it by 10−4. Density of preconditioners is defined
as

density =
nnz(L) + nnz(U)

nnz(A)
, (4.1)

in which nnz(L), nnz(U), and nnz(A) refer to the number of nonzero entries of L,U, and A
matrices, respectively. In all the experiments, we have selected εL,εU, εW , εZ, εL,Z, εU,W , εL,W ,
and εU,Z equal to 0.1.

Table 1, reports results of GMRES(16) method without preconditioning. In this table,
n indicates the dimension of the matrix and PD column indicates whether or not the matrix
is positive definite. Yes (no) in this column means that the matrix is (is not) positive definite.
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Table 2: properties of ILUFF1, ILUFF2, ILUFF3, and ILUFF4 preconditioners.

Method ILUFF1 ILUFF2 ILUFF3 ILUFF4

Density P time Density P time Density P time Density P time

hor-131 0.984696 22.031 1.098996 43.86 0.990435 32.422 1.075562 32.64
sherman2 0.463237 466.531 0.682342 742.432 0.462847 637.203 0.687668 666.312
cavity05 0.272646 736.343 0.338992 1567.223 0.280553 1079.63 0.368013 1139.59
cavity06 0.291794 678.782 0.376243 1484.22 0.295636 993 0.407515 817.828
sherman4 1.243001 266.203 1.312467 804.922 1.243001 319.172 1.321447 574.328
epb0 1.575348 943.093 1.981968 2360.44 1.750386 1274.88 2.248583 1777.27
pde2961 1.234763 6996.83 1.327048 10863 1.248269 5879.3 1.334248 9262.47

Table 3: Properties of IULBF1, IULBF2, IULBF3, and IULBF4 preconditioners.

Method IULBF1 IULBF2 IULBF3 IULBF4

Density P time Density P time Density P time Density P time

hor-131 0.893352 34.422 1.104017 62.11 1.046628 26.219 1.889527 63.328
sherman2 1.434745 766.187 2.834069 1166.11 0.823720 562.094 1.335498 1263.34
cavity05 0.682030 1596.86 1.478304 1887.42 0.686106 803.25 1.538000 2071.98
cavity06 0.651693 663.953 1.549958 1870.22 0.657894 791.422 1.628745 1337.67
sherman4 1.270470 789.687 1.345483 870.672 1.386952 459.625 2.055203 622.031
epb0 0.850721 1077.48 0.853941 3577.97 1.009274 951.688 1.356775 2924.58
pde2961 1.278642 7344.64 1.357011 15909.7 1.309427 4634.16 2.180871 9440.33

Itime, indicates the iteration time of GMRES(16) without preconditioning and it, is the
number of iterations of GMRES(16) method. Itime is in seconds. In this table, + means that
there is no convergence after 10,000 iterations. In all the experiments, the stopping criterion
is

‖rk‖2
‖r0‖2

≤ 10−8, (4.2)

in which rk is the kth residual vector of the system and r0 is the initial residual vector. In all
the experiments, the initial guess is the zero vector.

In Table 2, the information of ILUFF1, ILUFF2, ILUFF3, and ILUFF4 preconditioners
are presented and also in Table 3, the information of IULBF1, IULBF2, IULBF3, and IULBF4
preconditioners are presented. In Tables 2 and 3, P time is the preconditioning time and
density is the density of preconditioner. P time is also in seconds.

In Table 4, results of left preconditioned systems by using different versions of ILUFF
preconditioner have been presented, and also in Table 5 results of left preconditioned systems
by using different versions of IULBF preconditioner have been presented. In Tables 4 and 5,
T time is the total time which is the sum of preconditioning time and iteration time, and it is
the number of iterations of left preconditioned GMRES(16). In these tables, + indicates that
no convergence has been obtained in 5000 iterations.
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Table 4: Information of preconditioned GMRES(16) method by using different versions of ILUFF precon-
ditioner.

Method ILUFF1 ILUFF2 ILUFF3 ILUFF4

it T time it T time it T time it T time

hor-131 4 23.031 3 45.4868 2 32.922 2 32.984
sherman2 + + + + + + + +
cavity05 + + + + + + 191 2324.7
cavity06 + + + + + + 96 926.188
sherman4 3 270.324 3 810.734 3 322.687 3 577.485
epb0 12 978.405 8 2385.63 13 1335.89 8 1795.58
pde2961 4 7027.38 4 10894.7 4 5928.36 3 9294.05

Table 5: Information of preconditioned GMRES(16) method by using different versions of IULBF precon-
ditioner.

Method IULBF1 IULBF2 IULBF3 IULBF4

it T time it T time it T time it T time

hor-131 3 34.969 3 63.344 2 26.828 1 63.328
sherman2 + + + + + + 1 1265.38
cavity05 3 1600.69 2 1891.52 3 808.703 1 2074.26
cavity06 3 668.093 2 1872.95 3 795.438 1 1339.13
sherman4 3 792.609 2 874.141 2 462.016 2 626.094
epb0 24 1142.06 23 3673.17 22 1025.64 22 3010.25
pde2961 3 7376.75 3 15940.3 2 4648.44 1 9449.7

5. Conclusion

Results of Tables 1 and 4 show that ILUFF1, ILUFF2, ILUFF3, and ILUFF4 preconditioners are
useful tools to decrease the number of iterations of GMRES(16)method and results of Tables
1 and 5 show that IULBF1, IULBF2, IULBF3, and IULBF4 preconditioners are also useful tools
to decrease the number of iterations of GMRES(16) method.

Comparison of columns 2 and 6 of Table 4 indicates that sometimes ILUFF3
preconditioner decreases the number of iterations of GMRES(16) method a little bit more
than ILUFF1 preconditioner and some other times it is vice versa. Comparison of columns 2
and 4 and columns 6 and 8 of this table, also shows that ILUFF2 preconditioner decreases the
number of iterations of GMRES(16) method more than ILUFF1 preconditioner and ILUFF4
preconditioner decreases the number of iterations of GMRES(16) method more than ILUFF3
preconditioner.

Comparison of columns 2 and 6 of Table 5 indicates that IULBF3 preconditioner
decreases the number of iterations of GMRES(16) method a little bit more than IULBF1
preconditioner. Comparison of columns 2 and 4 and columns 6 and 8 of this table, also shows
that IULBF2 preconditioner decreases the number of iterations of GMRES(16) method more
than IULBF1 preconditioner and IULBF4 preconditioner decreases the number of iterations
of GMRES(16) method more than IULBF3 preconditioner.

Comparison of columns of Tables 4 and 5 indicate that (except for matrix epb0)
different versions of IULBF preconditioner decrease the number of iterations of GMRES(16)
method more than different versions of ILUFF preconditioner.
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