Breakdown-free version of ILU factorization for nonsymmetric positive definite matrices

A. Rafiei*, F. Toutounian
Department of Mathematics Ferdowsi University of Mashhad, Mashhad, P. O. Box. 91775-1159, Iran

A R T I CLE INFO

Article history:

Received 20 August 2007
Received in revised form 18 July 2008

MSC:

65 F 10

Keywords:

Implicit preconditioner
Sparse matrices
RIF
RIF $_{p}$

1. Introduction

In this paper we consider the solution of linear systems of the form

$$
\begin{equation*}
A x=b \tag{1}
\end{equation*}
$$

where the coefficient matrix $A \in \mathbb{R}^{n \times n}$ is large, sparse and nonsymmetric positive definite (NSPD), and b is a given right hand side vector using preconditioned conjugate gradient-type methods. Suppose that A admits the factorization

$$
\begin{equation*}
A=L D U \tag{2}
\end{equation*}
$$

where L, U^{T} are unit lower triangular matrices and D is a diagonal matrix. If \bar{L} and \bar{U}^{T} are sparse unit lower triangular matrices approximating (in some sense) the matrices L and U^{T}, respectively, and \bar{D} is a nonsingular diagonal matrix approximating D, then we say that matrix M with

$$
\begin{equation*}
M=\bar{L} \bar{D} \bar{U} \approx A \tag{3}
\end{equation*}
$$

is an incomplete LU (ILU) factorization preconditioner for matrix A. The transformed linear systems

$$
\begin{equation*}
A M^{-1} u=b, \quad M^{-1} u=x \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
M^{-1} A x=M^{-1} b \tag{5}
\end{equation*}
$$

have the same solution as system (1) and seem to be better-conditioned than the original system (1) to solve. It is wellknown that an incomplete factorization of a general matrix A may fail due to the occurrence of zero pivots, regardless of

[^0]
[^0]: * Corresponding author. Tel.: +98 5118404288.

 E-mail addresses: rafiei.am@gmail.com (A. Rafiei), toutouni@math.um.ac.ir (F. Toutounian).
 0377-0427/\$ - see front matter © 2009 Elsevier B.V. All rights reserved.
 doi:10.1016/j.cam.2009.01.011

