
The Extended Abstracts of Talks
The 7th Seminar on Linear Algebra and its Applications

26-27th February 2014, Ferdowsi University of Mashhad, Iran

LEFT-LOOKING VERSION OF RIF
PRECONDITIONER WITH COMPLETE PIVOTING

STRATEGY

A. RAFIEI1∗AND E. MORADIAN2

Department of Applied Mathematics, Hakim Sabzevari University, Iran
1rafiei.am@gmail.com, a.rafiei@hsu.ac.ir

2moradian elham@ymail.com

Abstract. In this paper, we use a complete pivoting strategy for
the left-looking version of RIF preconditioner and study effect of
this pivoting.

1. Introduction

Consider the linear system of equations of the form Ax = b where
the coefficient matrix A ∈ R

n×n is nonsingular, large, sparse and non-
symmetric and also x, b ∈ R

n. Krylov subspace methods can be used
to solve this system [3]. An implicit preconditioner M for this system
is an approximation of matrix A, i.e., M ≈ A. This preconditioner
can be used as the right preconditioner for this system. In this case,
instead of solving the original system Ax = b, it is better to solve the
right preconditioned system AM−1u = b, where x = M−1u, by the
Krylov subspace methods. ILU preconditioners are examples of im-
plicit preconditioners. These type of preconditioners are in the form
of M = LDU where L and UT are unit lower triangular matrices and
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D is a diagonal matrix. In this paper, we propose pivoting for the
left-looking version of RIF which is an implicit preconditioner.

2. Complete pivoting strategy for the left-looking
version of RIF preconditioner

Suppose that no dropping is applied in Algorithm 1. Also suppose
that Πk and Σk, for 1 ≤ k ≤ i− 1, are the computed row and column
permutation matrices at steps 1 to i − 1 of this algorithm. At the
beginning of step i of this algorithm, at first, lines 2 and 3 are set.
Then, the internal while loop is run and in line 6 the parameter iter is

set equal to iter+1. After that, vector z
(i−1)
i is computed in lines 7-11.

The pivot element q
(i−1)
i is computed in line 12. The essential relation

q
(i−1)
j = eTj (ΠAΣ)z

(i−1)
i , for j ≥ i+ 1, gives the chance to compute the

vector (q
(i−1)
i+1 , · · · , q(i−1)

n ) in lines 13-15. This vector is used to apply
the row pivoting strategy in lines 16-22 and matrix Π is updated. Since
the balance of the column pivoting has been ruined, then satisfied p
is set to false in line 18. After the row pivoting, satisfied q is set

to true in line 23. Next, vector w
(i−1)
i is computed in lines 26-30.

In line 31, the pivot element p
(i−1)
i is set equal to q

(i−1)
i . The key

relation p
(i−1)
j = (w

(i−1)
i )T (ΠAΣ)ej, for j ≥ i + 1, is used to compute

the vector (p
(i−1)
i+1 , · · · , p(i−1)

n ) in lines 32-34. After that, the column
pivoting strategy is applied in lines 35-41 and matrix Σ is updated.
Since the balance of the row pivoting has been ruined, then satisfied q
is set to false in line 37. After the column pivoting, satisfied p should
be set equal to true in line 42 and the algorithm will alternate between
the row and the column pivoting until the desired pivot element will be
computed. After the internal while loop of Algorithm 1, the i-th row
and the i-th column of matrices L and U are computed and dropped

in lines 45-48. After that, element q
(i−1)
i is defined as the (i, i) entry of

matrixD, i.e., dii. At the end of step n of Algorithm 1, the factorization
ΠAΣ ≈ M = LDU will be computed where Π = Πn−1 · · ·Π1 and
Σ = Σ1 · · ·Σn−1. Matrix M is termed the left-looking version of RIF
preconditioner with complete pivoting.

3. Numerical Results

In this section, we report the results of GMRES(30) method to
solve the original and the right preconditioned linear systems. Pre-
conditioners are left-looking RIF with and without pivoting. In Table
1, notation LLRIF is used for the left-looking version of RIF and
LLRIFP (1.0) indicates the left-looking version of RIF with pivoting
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Algorithm 1
Input: Let A ∈ R

n×n, U = L = In, Π = Σ = In, τw, τz , τl, τu ∈ (0, 1) be drop tolerances and
prescribe a tolerance α ∈ (0, 1].

Output: ΠAΣ ≈ LDU .

1. for i = 1 to n do

2. mi = ni = 0, iter = 0
3. satisfied p = satisfied q = false
4. while not satisfied q do

5. z
(0)
i = ei

6. iter = iter + 1
7. for j = 1 to i− 1 do

8. p
(j−1)
i = eTj (ΠAΣ)z

(j−1)
i

9. z
(j)
i = z

(j−1)
i − (

p
(j−1)
i

p
(j−1)
j

)z
(j−1)
j

10. for all l ≤ j, if |z(j)li | < τz , then set z
(j)
li = 0

11. end for

12. If iter = 1, then set q
(i−1)
i = eTi (ΠAΣ)z

(i−1)
i . Otherwise set q

(i−1)
i = p

(i−1)
i

13. for j = i+ 1 to n do

14. q
(i−1)
j = eTj (ΠAΣ)z

(i−1)
i

15. end for
16. if |q(i−1)

i | < α maxm≥i+1|q(i−1)
m | then

17. mi = mi + 1, π
(i−1)
mi

= In.
18. satisfied p = false

19. choose k such that |q(i−1)
k | = maxm≥i+1|q(i−1)

m |.
20. Interchange rows i and k of π

(i−1)
mi

and elements q
(i−1)
i and q

(i−1)
k

21. Π = π
(i−1)
mi

Π

22. end if
23. satisfied q = true
24. if not satisfied p then

25. w
(0)
i = ei

26. for j = 1 to i− 1 do

27. q
(j−1)
i = (w

(j−1)
i )T (ΠAΣ)ej

28. w
(j)
i = w

(j−1)
i − (

q
(j−1)
i

q
(j−1)
j

)w
(j−1)
j

29. for all l ≤ j, if |w(j)
li | < τw, then set w

(j)
li = 0

30. end for
31. p

(i−1)
i = q

(i−1)
i

32. for j = i+ 1 to n do

33. p
(i−1)
j = (w

(i−1)
i )T (ΠAΣ)ej

34. end for

35. if |p(i−1)
i | < α maxm≥i+1|p(i−1)

m | then
36. ni = ni + 1, σ

(i−1)
ni

= In
37. satisfied q = false

38. choose l such that |p(i−1)
l | = maxm≥i+1 |p(i−1)

m |
39. Interchange columns i and l of σ

(i−1)
ni

and elements p
(i−1)
i and p

(i−1)
l

40. Σ = Σσ
(i−1)
ni

41. end if
42. satisfied p = true
43. end if

44. end while
45. for j = 1 to i− 1 do

46. Lij =
q
(j−1)
i

q
(j−1)
j

, Uji =
p
(j−1)
i

p
(j−1)
j

47. If |Lij | < τl, then set Lij = 0. Also if |Uji| < τu, then set Uji = 0.
48. end for

49. dii = q
(i−1)
i

50. end for
51. Return L = (Lij)1≤i,j≤n, U = (Uij)1≤i,j≤n, D = diag(dii)1≤i≤n, Π and Σ.241
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Table 1.

properties No preconditioning LLRIFP (1.0) LLRIF

n nnz it Itime density it T time density it T time
fpga dcop 12 1220 5892 + + 1.842 45 0.078 0.9628 79 0.062
raefsky6 3402 137845 1353 5.72 0.995 5 0.484 0.274 7 0.406
sherman4 1104 3786 558 0.36 1.802 26 0.031 1.239 46 0.031

fpga dcop 14 1220 5892 + + 1.813 77 0.093 0.954 1144 1.296
epb3 84617 463625 + + 1.560 207 20.43 1.005 316 24.312

poisson3Da 13514 352762 261 3.50 2.863 60 5.390 0.337 130 3.765

that uses α = 1.0 for the row and the column pivoting. We have
considered 6 linear systems with the coefficient matrices from refer-
ence [2]. The right hand side vector of these systems is Ae where
e = [1, · · · , 1]T . The code of left-looking version of RIF with pivoting
is written in Fortran 77 and the codes of GMRES and left-looking
version of RIF are downloaded from the Sparskit [4] and Sparslab [1]
packages. In all the tests, parameters τw, τz, τl and τu are set equal to
0.1. In Table 1, n is the dimension and nnz is the number of nonzero
entries of the matrix. In columns 4 and 5 of this table, it and Itime
are the number of iterations and the iteration time of GMRES(30)
method with no preconditioning. In columns 7 and 10 and in columns
8 and 11 of this table, it is the number of iterations and Ttime is
the total time of GMRES(30) method that solves the right precondi-
tioned linear systems. For all the tests of this table, the convergence
criterion is satisfied when the relative residual is less than 10−8. A +
sign indicates that this criterion has not been satisfied in 5000 num-
ber of iterations. The parameter density in this table is defined as

density = nnz(L)+nnz(U)
nnz(A)

where nnz(L) and nnz(U) are the number of

nonzero entries of L and U factors. Numerical experiments indicate
that for all matrices, LLRIFP (1.0) is denser than LLRIF . The re-
sults also indicate that LLRIFP (1.0) makes the GMRES(30) method
converge in less number of iterations than LLRIF .
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