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Abstract. In this paper, we use a complete pivoting strategy for
the left-looking version of AINV preconditioner.

1. Introduction

Consider the linear system of equations of the form Ax = b, where
the coefficient matrix A ∈ R

n×n is nonsingular, large, sparse and non-
symmetric and also x, b ∈ R

n. Krylov subspace methods can be used
to solve this system [4]. An explicit preconditioner M for this system
is an approximation of matrix A−1, i.e., M ≈ A−1. If the explicit
preconditioner M is a good approximation of A−1, then it is better to
solve the right preconditioned system AMu = b where Mu = x by
the Krylov subspace methods. The most well-known explicit precondi-
tioner is the AINV preconditioner [1]. This preconditioner has three
factors in the form A−1 ≈ M = ZD−1W T where Z and W are unit
upper triangular matrices and D is a diagonal matrix. There are two
left and right-looking versions for this preconditioner. In this paper,
we extend pivoting for the left-looking version of this preconditioner.
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2. Left-looking version of AINV preconditioner with
complete pivoting

Algorithm 1, computes the left-looking version of AINV precon-
ditioner with pivoting. Suppose that no dropping be applied in this
algorithm. Also suppose that Πk and Σk for 1 ≤ k ≤ i − 1 are the
computed row and column permutation matrices at steps 1 to i − 1
of this algorithm. At the beginning of step i of this algorithm, at

first, lines 2-4 are set and then, vector z
(i−1)
i is computed in lines 7-10.

The pivot element q
(i−1)
i is computed in line 11. In lines 12-14, the

relation q
(i−1)
j = eTj (ΠAΣ)z

(i−1)
i , for j ≥ i+1, gives the chance to com-

pute the vector (q
(i−1)
i+1 , · · · , q(i−1)

n ). After that, row pivoting strategy is
done in lines 15-21 and matrix Π is updated. After the row pivoting,

satisfied q is set equal to true in line 22. Next, vector w
(i−1)
i is com-

puted in lines 24-27. In line 28, the pivot element p
(i−1)
i is set equal

to q
(i−1)
i . In lines 29-31, the key relation p

(i−1)
j = (w

(i−1)
i )T (ΠAΣ)ej,

for j ≥ i + 1, is used to compute the vector (p
(i−1)
i+1 , · · · , p(i−1)

n ). Af-
ter that, column pivoting strategy is applied in lines 32-38 and matrix
Σ is updated. After the column pivoting, satisfied p is set equal
to true in line 39. After the internal while loop of Algorithm 1, at

first, we drop entries of the computed columns z
(i−1)
i and w

(i−1)
i in

line 42. Then, element q
(i−1)
i is defined as the (i, i) entry of matrix

D, i.e., dii. At the end of step n of this algorithm; the factorization
(ΠAΣ)−1 ≈ M = ZD−1W T will be computed where Π = Πn−1 · · ·Π1

and Σ = Σ1 · · ·Σn−1. In this case, matrix M is termed the left-looking
version of AINV preconditioner with complete pivoting.

3. Numerical Results

In this section, we report results of GMRES(16) method to solve
the original and the right preconditioned linear systems. Precondition-
ers are left-looking AINV with and without pivoting. In the table,
notation LLAINV is used for the left-looking version of AINV and
LLAINV P (1.0) indicates the left-looking version of AINV with piv-
oting which is computed by using α = 1.0 for row and column pivoting.
We have considered 6 linear systems with the coefficient matrices from
reference [3]. The right hand side vector of these systems is Ae where
e = [1, · · · , 1]T . We have written code of left-looking version of AINV
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Algorithm 1 (Left-looking AINV preconditioner with complete pivot-

ing)
Input: Let A =∈ R

n×n, Π = Σ = In, τw, τz ∈ (0, 1) be drop tolerances and prescribe a tolerance
α ∈ (0, 1].

Output: (ΠAΣ)−1 ≈ ZD−1WT .

1. for i = 1 to n do
2. w

(0)
i = z

(0)
i = ei

3. mi = ni = 0, iter = 0
4. satisfied p = satisfied q = false
5. while not satisfied q do

6. iter = iter + 1
7. for j = 1 to i− 1 do

8. p
(j−1)
i = eTj (ΠAΣ)z

(j−1)
i

9. z
(j)
i = z

(j−1)
i − (

p
(j−1)
i

p
(j−1)
j

)z
(j−1)
j

10. end for

11. If iter = 1, then set q
(i−1)
i = eTi (ΠAΣ)z

(i−1)
i . Otherwise set q

(i−1)
i = p

(i−1)
i

12. for j = i+ 1 to n do

13. q
(i−1)
j = eTj (ΠAΣ)z

(i−1)
i

14. end for
15. if |q(i−1)

i | < α maxm≥i+1|q(i−1)
m | then

16. mi = mi + 1, π
(i−1)
mi

= In
17. satisfied p = false

18. choose k such that |q(i−1)
k | = maxm≥i+1|q(i−1)

m |
19. Interchange rows i and k of π

(i−1)
mi

and elements q
(i−1)
i and q

(i−1)
k

20. Π = π
(i−1)
mi

Π

21. end if
22. satisfied q = true
23. if not satisfied p then
24. for j = 1 to i− 1 do

25. q
(j−1)
i = (w

(j−1)
i )T (ΠAΣ)ej

26. w
(j)
i = w

(j−1)
i − (

q
(j−1)
i

q
(j−1)
j

)w
(j−1)
j

27. end for

28. p
(i−1)
i = q

(i−1)
i

29. for j = i+ 1 to n do

30. p
(i−1)
j = (w

(i−1)
i )T (ΠAΣ)ej

31. end for
32. if |p(i−1)

i | < α maxm≥i+1|p(i−1)
m | then

33. ni = ni + 1, σ
(i−1)
ni

= In
34. satisfied q = false

35. choose l such that |p(i−1)
l | = maxm≥i+1|p(i−1)

m |
36. Interchange columns i and l of σ

(i−1)
ni

and elements p
(i−1)
i and p

(i−1)
l

37. Σ = Σσ
(i−1)
ni

38. end if
39. satisfied p = true
40. end if
41. end while

42. For all l ≤ i, if |z(i−1)
li | < τz , then set z

(i−1)
li = 0. Also if |w(i−1)

li | < τw, then set

w
(i−1)
li = 0

43. dii = q
(i−1)
i

44. end for
45. Return Z = [z

(0)
1 , z

(1)
2 , · · · , z(n−1)

n ], W = [w
(0)
1 , w

(1)
2 , · · · , w(n−1)

n ], D = diag(dii)1≤i≤n, Π

and Σ.
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method properties no precond LLAINV P (1.0) LLAINV

n nnz It Itime Ptime density It T time Ptime density It T time
raefsky5 6316 168658 70 0.343 1.28 0.235 7 1.32 0.406 0.512 9 0.453
orsirr 1 1030 6858 + + 0.25 0.870 66 0.281 0.156 0.644 + +
orsirr 2 886 5970 + + 0.187 0.906 65 0.218 0.125 0.652 + +
cdde1 961 4681 2682 1.015 0.453 1.787 85 0.1562 0.046 1.66 1396 0.75

raefsky6 3402 137845 1819 6.375 4.312 0.090 7 4.34 1.98 0.257 11 2.03
orsreg 1 2205 14133 727 0.687 5.546 0.901 66 5.625 3.15 0.667 + +

with pivoting in Fortran 77. Codes of left-looking version of AINV
and GMRES are taken from the Sparslab [2] and Sparskit [5] pack-
ages, respectively. In all the tests, parameters τw and τz are set equal
to 0.1. In the table, n is the dimension and nnz is the number of
nonzero entries of the matrix. In columns 4 and 5, It is the number of
iterations of GMRES(16) method with no preconditioning and Itime
is its iteration time. This parameter is in second. In columns 8 and
12 of the table, It is the number of iterations of GMRES(16) that
solves the right preconditioned linear systems. In columns 9 and 13,
Ttime is the total time to solve the right preconditioned linear systems.
Ttime is the iteration time plus the preconditioning time and is also
in second. For all the tests, the convergence criterion is satisfied when
the relative residual is less than 10−8. In the table, a + sign means
that the convergence criterion is not satisfied in 2500 number of iter-
ations. In the table, Ptime is the preconditioning time which is also

in second and density = nnz(Z)+nnz(W )
nnz(A)

where nnz(Z) and nnz(W ) are

the number of nonzero entries of Z and W factors. For all matrices,
Ptime of LLAINV P (1.0) is greater than Ptime of LLAINV P (1.0)
but LLAINV P (1.0) is more effective than LLAINV to reduce the
number of iterations of GMRES(16) method.
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