

The Extended Abstracts of The 44th Annual Iranian Mathematics Conference 27-30 August 2013, Ferdowsi University of Mashhad, Iran.

COMPLETE PIVOTING STRATEGY FOR THE LEFT-LOOKING VERSION OF AINV PRECONDITIONER

AMIN RAFIEI^{1*}AND ELHAM MORADIAN²

¹ Department of Applied Mathematics, Hakim Sabzevari University, Iran a.rafiei@hsu.ac.ir; rafiei.am@gmail.com;

> ² Hakim Sabzevari University, Sabzevar, Iran moradian_elham@ymail.com

ABSTRACT. In this paper, we use a complete pivoting strategy for the left-looking version of AINV preconditioner.

1. INTRODUCTION

Consider the linear system of equations of the form Ax = b, where the coefficient matrix $A \in \mathbb{R}^{n \times n}$ is nonsingular, large, sparse and nonsymmetric and also $x, b \in \mathbb{R}^n$. Krylov subspace methods can be used to solve this system [4]. An explicit preconditioner M for this system is an approximation of matrix A^{-1} , *i.e.*, $M \approx A^{-1}$. If the explicit preconditioner M is a good approximation of A^{-1} , then it is better to solve the right preconditioned system AMu = b where Mu = x by the Krylov subspace methods. The most well-known explicit preconditioner is the AINV preconditioner [1]. This preconditioner has three factors in the form $A^{-1} \approx M = ZD^{-1}W^T$ where Z and W are unit upper triangular matrices and D is a diagonal matrix. There are two left and right-looking versions for this preconditioner. In this paper, we extend pivoting for the left-looking version of this preconditioner.

²⁰¹⁰ Mathematics Subject Classification. Primary 65F10. Secondary 65F50, 65F08.

Key words and phrases. Left-looking AINV, preconditioning, pivoting. * Speaker.

A. RAFIEI, E. MORADIAN

2. Left-looking version of *AINV* preconditioner with complete pivoting

Algorithm 1, computes the left-looking version of AINV preconditioner with pivoting. Suppose that no dropping be applied in this algorithm. Also suppose that Π_k and Σ_k for $1 \leq k \leq i-1$ are the computed row and column permutation matrices at steps 1 to i-1of this algorithm. At the beginning of step i of this algorithm, at first, lines 2-4 are set and then, vector $z_i^{(i-1)}$ is computed in lines 7-10. The pivot element $q_i^{(i-1)}$ is computed in line 11. In lines 12-14, the relation $q_j^{(i-1)} = e_j^T(\Pi A \Sigma) z_i^{(i-1)}$, for $j \ge i+1$, gives the chance to compute the vector $(q_{i+1}^{(i-1)}, \cdots, q_n^{(i-1)})$. After that, row pivoting strategy is done in lines 15-21 and matrix Π is updated. After the row pivoting, satisfied_ q is set equal to true in line 22. Next, vector $w_i^{(i-1)}$ is computed in lines 24-27. In line 28, the pivot element $p_i^{(i-1)}$ is set equal to $q_i^{(i-1)}$. In lines 29-31, the key relation $p_j^{(i-1)} = (w_i^{(i-1)})^T (\Pi A \Sigma) e_j$, for $j \ge i+1$, is used to compute the vector $(p_{i+1}^{(i-1)}, \cdots, p_n^{(i-1)})$. After that, column pivoting strategy is applied in lines 32-38 and matrix Σ is updated. After the column pivoting, satisfied p is set equal to true in line 39. After the internal while loop of Algorithm 1, at first, we drop entries of the computed columns $z_i^{(i-1)}$ and $w_i^{(i-1)}$ in line 42. Then, element $q_i^{(i-1)}$ is defined as the (i, i) entry of matrix D, i.e., d_{ii} . At the end of step n of this algorithm; the factorization $(\Pi A \Sigma)^{-1} \approx M = Z D^{-1} W^T$ will be computed where $\Pi = \Pi_{n-1} \cdots \Pi_1$ and $\Sigma = \Sigma_1 \cdots \Sigma_{n-1}$. In this case, matrix M is termed the left-looking version of AINV preconditioner with complete pivoting.

3. Numerical Results

In this section, we report results of GMRES(16) method to solve the original and the right preconditioned linear systems. Preconditioners are left-looking AINV with and without pivoting. In the table, notation LLAINV is used for the left-looking version of AINV and LLAINVP(1.0) indicates the left-looking version of AINV with pivoting which is computed by using $\alpha = 1.0$ for row and column pivoting. We have considered 6 linear systems with the coefficient matrices from reference [3]. The right hand side vector of these systems is Ae where $e = [1, \dots, 1]^T$. We have written code of left-looking version of AINV

Algorithm 1 (Left-looking AINV preconditioner with complete pivoting)

Input: Let $A = \in \mathbb{R}^{n \times n}$, $\Pi = \Sigma = I_n$, $\tau_w, \tau_z \in (0, 1)$ be drop tolerances and prescribe a tolerance $\alpha \in (0, 1]$.

Output: $(\Pi A \Sigma)^{-1} \approx Z D^{-1} W^T$. 1. for i = 1 to n do 2. $w_i^{(0)} = z_i^{(0)} = e_i$ 3. $m_i = n_i = 0, iter = 0$ 4. $satisfied_p = satisfied_q = false$ 5.while not $satisfied_{-} q$ do 6. iter=iter+1 $\begin{aligned} &\text{for } j = 1 \text{ to } i - 1 \text{ do} \\ &p_i^{(j-1)} = e_j^T (\Pi A \Sigma) z_i^{(j-1)} \\ &z_i^{(j)} = z_i^{(j-1)} - (\frac{p_i^{(j-1)}}{p_j^{(j-1)}}) z_j^{(j-1)} \end{aligned}$ 7. 8. 9. 10.end for If *iter* = 1, then set $q_i^{(i-1)} = e_i^T(\Pi A \Sigma) z_i^{(i-1)}$. Otherwise set $q_i^{(i-1)} = p_i^{(i-1)}$ for j = i + 1 to n do $q_j^{(i-1)} = e_j^T(\Pi A \Sigma) z_i^{(i-1)}$ end for 11. 12.13.end for if $|q_i^{(i-1)}| < \alpha \max_{m \ge i+1} |q_m^{(i-1)}|$ then $m_i = m_i + 1, \ \pi_{m_i}^{(i-1)} = I_n$ 14. 15.16.17. $satisfied_{\text{-}} \ p = false$ choose k such that $|q_k^{(i-1)}| = max_{m \ge i+1} |q_m^{(i-1)}|$ 18.Interchange rows *i* and *k* of $\pi_{m_i}^{(i-1)}$ and elements $q_i^{(i-1)}$ and $q_k^{(i-1)}$ 19. $\Pi = \pi_{m_i}^{(i-1)} \Pi$ 20.21.end if 22. $satisfied_{-} q = true$ 23.if not satisfied_ p then for j = 1 to i - 1 do $q_i^{(j-1)} = (w_i^{(j-1)})^T (\Pi A \Sigma) e_j$ $w_i^{(j)} = w_i^{(j-1)} - (\frac{q_i^{(j-1)}}{q_j^{(j-1)}}) w_j^{(j-1)}$ 24.25.26. $\begin{array}{l} \mathop{\rm end}_{} & \mathop{\rm for}_{} \\ p_i^{(i-1)} = q_i^{(i-1)} \\ \mathop{\rm for}_{} & j = i+1 \ {\rm to} \ n \ {\rm do} \\ p_j^{(i-1)} = (w_i^{(i-1)})^T (\Pi A \Sigma) e_j \end{array}$ 27.28.29.30.end for if $|p_i^{(i-1)}| < \alpha \max_{m \ge i+1} |p_m^{(i-1)}|$ then $n_i = n_i + 1, \ \sigma_{n_i}^{(i-1)} = I_n$ 31. 32.33. 34. $satisfied_q = false$ chose l such that $|p_l^{(i-1)}| = max_{m \ge i+1} |p_m^{(i-1)}|$ Interchange columns i and l of $\sigma_{n_i}^{(i-1)}$ and elements $p_i^{(i-1)}$ and $p_l^{(i-1)}$ 35.36. $\Sigma = \Sigma \sigma_{n_i}^{(i-1)}$ 37.38.end if 39. $satisfied_{-} p = true$ 40. end if 41. end while For all $l \leq i$, if $|z_{li}^{(i-1)}| < \tau_z$, then set $z_{li}^{(i-1)} = 0$. Also if $|w_{li}^{(i-1)}| < \tau_w$, then set 42. $w_{li}^{(i-1)} = 0$ $d_{ii} = q_i^{(i-1)}$ 43. $44. \ \mathbf{end} \ \mathbf{for}$ 45. Return $Z = [z_1^{(0)}, z_2^{(1)}, \cdots, z_n^{(n-1)}], W = [w_1^{(0)}, w_2^{(1)}, \cdots, w_n^{(n-1)}], D = diag(d_{ii})_{1 \le i \le n}, \Pi$ and Σ .

A. RAFIEI, E. MORADIAN

method	properties		no precond		LLAINVP(1.0)				LLAINV			
	n	nnz	It	Itime	Ptime	density	It	Ttime	Ptime	density	It	Ttime
raefsky5	6316	168658	70	0.343	1.28	0.235	7	1.32	0.406	0.512	9	0.453
orsirr_1	1030	6858	+	+	0.25	0.870	66	0.281	0.156	0.644	+	+
orsirr_2	886	5970	+	+	0.187	0.906	65	0.218	0.125	0.652	+	+
cdde1	961	4681	2682	1.015	0.453	1.787	85	0.1562	0.046	1.66	1396	0.75
raefsky6	3402	137845	1819	6.375	4.312	0.090	7	4.34	1.98	0.257	11	2.03
orsreg_1	2205	14133	727	0.687	5.546	0.901	66	5.625	3.15	0.667	+	+

with pivoting in Fortran 77. Codes of left-looking version of AINV and GMRES are taken from the Sparslab [2] and Sparskit [5] packages, respectively. In all the tests, parameters τ_w and τ_z are set equal to 0.1. In the table, n is the dimension and nnz is the number of nonzero entries of the matrix. In columns 4 and 5, It is the number of iterations of GMRES(16) method with no preconditioning and Itime is its iteration time. This parameter is in second. In columns 8 and 12 of the table, It is the number of iterations of GMRES(16) that solves the right preconditioned linear systems. In columns 9 and 13, *Ttime* is the total time to solve the right preconditioned linear systems. *Ttime* is the iteration time plus the preconditioning time and is also in second. For all the tests, the convergence criterion is satisfied when the relative residual is less than 10^{-8} . In the table, a + sign means that the convergence criterion is not satisfied in 2500 number of iterations. In the table, *Ptime* is the preconditioning time which is also in second and $density = \frac{nnz(Z) + nnz(W)}{nnz(A)}$ where nnz(Z) and nnz(W) are the number of nonzero entries of Z and W factors. For all matrices, Ptime of LLAINVP(1.0) is greater than Ptime of LLAINVP(1.0)but LLAINVP(1.0) is more effective than LLAINV to reduce the number of iterations of GMRES(16) method.

References

- M. Benzi and M. Tůma, A sparse approximate inverse preconditioner for nonsymmetric linear systems, SIAM J. Sci. Comput., 19 (1998), 968-994.
- 2. M. Benzi and M. Tůma, *Sparslab software package*. http://www2.cs.cas.cz/ tuma/sparslab.html. Accessed 2013.
- 3. T. Davis, University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/matrices. Accessed 2012.
- Y. Saad, Iterative Methods for Sparse Linear Systems. PWS publishing, New York., (1996).
- 5. Y. Saad, *Sparskit and sparse examples.* http://www-users.cs.umn.edu/ saad/software. Accessed 2013.