A hybrid preconditioner to solve nonsymmetric linear system of equations

Amin Rafiei*

Department of Applied Mathematics, Sabzevar Tarbiat Moallem University, Sabzevar, Iran.

Abstract. In this paper, modified left and right-looking versions of SAINV-Ns (Stabilized Approximate Inverse for Nonsymmetric matrices) preconditioner have been presented. Structural modification of prototype versions has been done in such a way that it is possible to make both versions of this preconditioner more robust by using inverse-based dropping technique. Only the information of matrix A is used to generate this preconditioner. To decrease preconditioning time of the right-looking version, matrix A is stored in Compressed Sparse Column format. To construct this version, row traversal of matrix A is also needed. To avoid storing matrix A in Compressed Sparse Row format, the linked list trick has been used. By using some nonsymmetric matrices, modified left and right-looking versions of this preconditioner have been compared. The multilevel nested dissection reordering has also been used as the preprocessing.

Keywords: A-biconjugation process; Left-looking SAINV-Ns; Right-looking SAINV-Ns; Inverse-based dropping technique.

Mathematics Subject Classification 2010: 65F10, 65F08.

1 Introduction

An explicit preconditioner M for the linear system of equations

$$Ax = b, (1.1)$$

is an approximation of A^{-1} . This preconditioner will change the linear system (1.1) to the right or left preconditioned systems

$$MAx = Mb, \qquad AMu = b, \ Mu = x. \tag{1.2}$$

57

http://www.i-asr.com/Journals/jarsc/

^{*}Correspondence to: Amin Rafiei, Department of Applied Mathematics, Sabzevar Tarbiat Moallem University, Sabzevar, Iran. Email: rafiei.am@gmail.com, rafiei@sttu.ac.ir [†]Received: 27 July 2011, accepted: 31 October 2011.

^{©2011} Institute of Advanced Scientific Research

To solve the preconditioned systems (1.2) with Krylov subspace methods, matrix-vector multiplication will be needed during each inner step.

An implicit preconditioner M^{-1} for the linear system (1.1) is an approximation of A. This preconditioner will change the original system (1.1) to the right or left preconditioned systems

$$M^{-1}Ax = M^{-1}b, \qquad AM^{-1}u = b, \ M^{-1}u = x.$$
 (1.3)

To solve the preconditioned systems (1.3) with Krylov subspace methods, two different systems should be solved with forward and backward substitution methods during each inner step.

One can consider a hybrid preconditioner as an approximation of A and A^{-1} . Suppose this preconditioner converts the original system (1.1) to the preconditioned system. To solve the preconditioned system with Krylov subspace methods, we need matrix-vector multiplication and solving one backward (forward) system during each inner step.

In [10], we presented a hybrid preconditioner for nonsymmetric matrices which we termed it SAINV-Ns and is breakdown-free for positive definite matrices. This preconditioner comes out of the A-biconjugation process. Thus, it has left and right-looking versions. The SAINV-Ns preconditioner has two unit triangular and one diagonal factors. The computations of the triangular factors are interlaced together. This preconditioner has also the ability to be an explicit preconditioner. In [10], we only proposed the prototype version of the right-looking version of this preconditioner and we implemented it in a naive way. In this paper, we propose the prototype form of the left-looking version of this preconditioner. We also present modified forms of the left and right-looking versions which are structurally different from prototype versions. We also implement both modified left and right-looking versions efficiently. In this implementation, we have used the inverse-based dropping technique and the linked lists trick.

In this paper, we use $X_{i,:}$ and $X_{:,i}$ as the notations for the *i*-th row and the *i*-th column of an arbitrary matrix X, respectively. We also use $X_{i_1:i_2,j_1:j_2}$ as the notation of a submatrix of X where row indices are between i_1 and i_2 and column indices are between j_1 and j_2 .

In Section 2, at first the mathematical basis of the prototype form of the right-looking version of SAINV-Ns preconditioner will be considered. Then, we will explain the main reason of why we need to modify this form and the modified form of the right-looking version will be presented. All our considerations in Section 2, will be generalized for the left-looking version of SAINV-Ns preconditioner in Section 3. In Section 4, we have exploited Krylov subspace methods and some nonsymmetric test matrices to compare the modified form of the left and right-looking versions of SAINV-Ns preconditioner. In Section 5, conclusions will be presented.

2 Right-looking version of SAINV-Ns preconditioner

Suppose that matrix A has the inverse factorization

$$A^{-1} = ZD^{-1}W^T, (2.1)$$

in which Z and W are unit upper triangular matrices and D is a diagonal one. If in Algorithm 1, no dropping will be applied, then the factorization (2.1) will be computed. Otherwise, the approximate inverse factorization

$$A^{-1} \approx Z D^{-1} W^T, \tag{2.2}$$

will be computed. Structure of this algorithm is as the following [1,3]:

Algorithm 1 (right-looking version of the A-biconjugation algorithm)

1. For i = 1, 2, ..., n Do: 2. $w_i^{(0)} = e_i, \quad z_i^{(0)} = e_i.$ 3. End Do For i = 1, 2, ..., n Do: 4. $\begin{aligned} v_i &= Ae_i, \quad u_i = A^T e_i \text{ {not positive definite} } \\ v_i &= Aw_i^{(i-1)}, \quad u_i = A^T z_i^{(i-1)} \text{ {positive definite} } \\ p_i^{(i-1)} &= (w_i^{(i-1)})^T v_i, \quad q_i^{(i-1)} = (z_i^{(i-1)})^T u_i \\ \text{For } j &= i+1, \dots, n \text{ Do:} \\ q_j^{(i-1)} &= (w_j^{(i-1)})^T v_i, \quad p_j^{(i-1)} &= (z_j^{(i-1)})^T u_i \\ \end{aligned}$ 5.6. 7. 8. 9. apply a dropping rule to $q_j^{(i-1)}$ and to $p_j^{(i-1)}$ 10. $w_j^{(i)} = w_j^{(i-1)} - (\frac{q_j^{(i-1)}}{a_i^{(i-1)}})w_i^{(i-1)}, \quad z_j^{(i)} = z_j^{(i-1)} - (\frac{p_j^{(i-1)}}{p_i^{(i-1)}})z_i^{(i-1)}$ 11. for all $l \leq i$ apply a dropping rule to $w_{li}^{(i)}$ and to $z_{li}^{(i)}$ 12.End Do 13.14. End Do 11. Let $w_i = w_i^{(i-1)}$, $z_i = z_i^{(i-1)}$ and $d_{ii} = p_i^{(i-1)}$, for $1 \le i \le n$. 16. Return $W = [w_1, \dots, w_n]$, $D = (d_{ii})$ and $Z = [z_1, \dots, z_n]$.

The next proposition will allow us to interlace the computation of the parameters $p_j^{(i-1)}$ and $q_j^{(i-1)}$ in this algorithm.

Proposition 2.1. Parameters $p_j^{(i-1)}$ and $q_j^{(i-1)}$ obtained from Algorithm 1, satisfy the following relations for $1 \le i \le j \le n$:

$$p_j^{(i-1)} = a_{ij} - \sum_{k=1}^{i-1} \frac{p_j^{(k-1)}}{p_k^{(k-1)}} q_i^{(k-1)}, \qquad q_j^{(i-1)} = a_{ji} - \sum_{k=1}^{i-1} \frac{q_j^{(k-1)}}{q_k^{(k-1)}} p_i^{(k-1)}.$$
 (2.3)

Proof. See [10].

Besides having the factorization (2.1), suppose that matrix A has the factorization

$$A = LDU, (2.4)$$

in which L^T and U are unit upper triangular matrices and D is a diagonal one. Since this factorization is unique, from relations (2.1) and (2.4) one can conclude that

$$Z = U^{-1}, \qquad W^T = L^{-1}.$$
 (2.5)

Therefore, entries of matrix U can be computed as [2, 10]:

$$U_{ij} = (D^{-1}W^T A)_{ij} = \frac{p_j^{(i-1)}}{p_i^{(i-1)}}.$$
(2.6)

Relation (2.6) converts relation (2.3) to the following form:

$$p_j^{(i-1)} = a_{ij} - \sum_{k=1}^{i-1} U_{kj} q_i^{(k-1)}.$$
(2.7)

The main motivation of the prototype form of the right-looking version of SAINV-Ns preconditioner was on removing the effect of matrix A^T and not computing the Z factor in Algorithm 1. In [10], we presented an algorithm that computes the factorization

$$A^{-1} = U^{-1} D^{-1} W^T, (2.8)$$

and exploits relation (2.7) to compute $p_j^{(i-1)}$ parameters. The algorithm is in the form:

Algorithm 2 (Prototype version of the right-looking SAINV-Ns)

1. $w_i^{(0)} = e_i$, $1 \le i \le n$. 2. For i = 1, 2, ..., n Do: 3. $v_i = Ae_i$ {not positive definite} 4. $v_i = Aw_i^{(i-1)}$ {positive definite} 5. $p_i^{(i-1)} = q_i^{(i-1)} = (w_i^{(i-1)})^T v_i$ 6. For j = i + 1, ..., n Do: 7. $q_j^{(i-1)} = (w_j^{(i-1)})^T v_i$ 8. apply a dropping rule to $q_j^{(i-1)}$ 9. $p_j^{(i-1)} = a_{ij} - \sum_{k=1}^{i-1} U_{kj} q_i^{(k-1)}$ 10. $w_j^{(i)} = w_j^{(i-1)} - (\frac{q_j^{(i-1)}}{q_i^{(i-1)}}) w_i^{(i-1)}$ 11. for all $l \le i$ apply a dropping rule to $w_{lj}^{(i)}$ 12. $U_{ij} = \frac{p_j^{(i-1)}}{p_i^{(i-1)}}$ 13. apply a dropping rule to U_{ij}

60

14. End Do 15. End Do

- 16. Let $w_i = w_i^{(i-1)}$ and $d_{ii} = p_i^{(i-1)}$, for $1 \le i \le n$. 17. Return $W = [w_1, \dots, w_n]$, $D = (d_{ii})$ and $U = (U_{ij})$.

If in Algorithm 2 dropping will be applied, then the approximate factorization

$$A^{-1} \approx U^{-1} D^{-1} W^T, \tag{2.9}$$

will be computed.

At step i of Algorithm 2, the $U_{i,:}$ is computed. Thus, one can use Compressed Sparse Row format of storage [12] for this matrix. But at this step, the submatrix $U_{1:i-1,i+1:n}$ should be traversed column-wise. Suppose we define entries of the lower triangular matrix Q as:

$$Q_{ji} = q_j^{(i-1)}, \qquad j \ge i.$$
 (2.10)

At step i of Algorithm 2, the $Q_{:,i}$ is computed. Thus, one can use Compressed Sparse Column format of storage [12] for matrix Q. But at this step, to compute parameters $p_j^{(i-1)}$, row traversal of $Q_{i,:}$ is needed.

To compute lines 3 and 4 of Algorithm 2 in sparse-sparse mode, the matrix A should be stored in Compressed Sparse Column format. But we need to access $A_{i,i+1:n}$ in each step i of this algorithm.

Therefore in Algorithm 2, matrices A and Q are stored in Compressed Sparse Column format, but these two matrices are traversed row-wise. Furthermore, matrix U is stored in Compressed Sparse Row format and is accessed column-wise.

Suppose we swap k and j loops in Algorithm 2. The new following algorithm will be obtained:

Algorithm 3 (Modified version of the right-looking SAINV-Ns)

- 1. $w_i^{(0)} = e_i, \quad 1 \le i \le n.$ 2. For i = 1, 2, ..., n Do: $v_i = Ae_i$ {not positive definite} 3. $v_{i} = Aw_{i}^{(i-1)} \{ \text{positive definite} \}$ $p_{i}^{(i-1)} = q_{i}^{(i-1)} = (w_{i}^{(i-1)})^{T} v_{i}$ $d_{ii} = q_{i}^{(i-1)} \text{ or } p_{i}^{(i-1)}$ 4. 5. 6. For j = i + 1, ..., n Do: $q_j^{(i-1)} = (w_j^{(i-1)})^T v_i$ 7.8. apply a dropping rule to $q_j^{(i-1)}$ $w_j^{(i)} = w_j^{(i-1)} - (\frac{q_j^{(i-1)}}{q_i^{(i-1)}})w_i^{(i-1)}$ 9. 10. for all $l \leq i$ apply a dropping rule to $w_{lj}^{(i)}$ 11.
- 12.End Do

- $p_j^{(i-1)} = a_{ij}, \quad i+1 \le j \le n.$ For k = 1, ...i 1 Do: 13.14. For j = i + 1, ...n Do: $p_j^{(i-1)} = p_j^{(i-1)} - U_{kj}q_i^{(k-1)}$ 15.16. 17.End Do: $U_{ij} = \frac{p_j^{(i-1)}}{p_i^{(i-1)}}, \quad i+1 \le j \le n.$ apply a dropping rule to U_{ij} 18. 19. 20.21. End Do 21. Let $w_i = w_i^{(i-1)}$ and $d_{ii} = p_i^{(i-1)}$, for $1 \le i \le n$. 23. Return $W = [w_1, \ldots, w_n]$, $D = (d_{ii})$ and $U = (U_{ij})$.

In Algorithm 3, matrices A and Q are stored in Compressed Sparse Column format and we use the linked lists trick to access them row-wise [9]. In this algorithm, matrix U is stored and accessed row-wise. This will give the ability to use the inverse-based dropping technique to drop entries of this matrix. Suppose that ε_U is the drop tolerance parameter for matrix U. We drop entry U_{ij} of this matrix when the dropping criterion

$$|U_{ij}| ||U^{-1}e_i||_{\infty} \le \varepsilon_U, \tag{2.11}$$

is satisfied [4, 11]. This is the safest way of dropping. Since matrix U is computed rowwise, it is possible to compute an approximation of $||e_i^T U^{-T}||_{\infty}$ which can be viewed as an approximation of $||U^{-1}e_i||_{\infty}$ by the following formula:

$$\|U^{-1}e_i\|_{\infty} \le \|U^{-1}e_i\|_1 = \|e_i^T U^{-T}\|_{\infty}.$$
(2.12)

The approximation of $\|e_i^T U^{-T}\|_{\infty}$ is computed by the adaptations of the condition estimator algorithm [5,7].

We select $\varepsilon_{Q,W}$ as the drop tolerance parameter for entries of both Q and W matrices in Algorithm 3. Entry $w_{lj}^{(i)}$ is dropped when the criterion

$$|w_{lj}^{(i)}| \le \varepsilon_{Q,W},\tag{2.13}$$

is satisfied. With respect to what has been surveyed in [4, 11], we use the criterion

$$\left(\frac{q_{j}^{(i-1)}}{q_{i}^{(i-1)}}\right)|||W_{:,i}||_{\infty} \le \varepsilon_{Q,W},$$
(2.14)

to drop entry $q_i^{(i-1)}$. This type of dropping is also an inverse-based dropping technique.

Left-looking version of SAINV-Ns preconditioner 3

There is also the left-looking version of the A-biconjugation algorithm [1,3]. This algorithm is as the following:

62

Algorithm 4 (left-looking version of the A-biconjugation algorithm)

1. For i = 1, ..., n Do: 2. $w_i^{(0)} = e_i, z_i^{(0)} = e_i.$ 3. For j = 1, ..., i - 1 Do: 4. $q_i^{(j-1)} = (w_i^{(j-1)})^T A e_j, p_i^{(j-1)} = (z_i^{(j-1)})^T A^T e_j$ 5. apply a dropping rule to $q_i^{(j-1)}$ and to $p_i^{(j-1)}$ 6. $w_i^{(j)} = w_i^{(j-1)} - (\frac{q_i^{(j-1)}}{q_j^{(j-1)}}) w_j^{(j-1)}, z_i^{(j)} = z_i^{(j-1)} - (\frac{p_i^{(j-1)}}{p_j^{(j-1)}}) z_j^{(j-1)}$ 7. for all $l \le j$ apply a dropping rule to $w_{li}^{(j)}$ and to $z_{li}^{(j)}$ 8. End Do 9. $q_i^{(i-1)} = (w_i^{(i-1)})^T A e_i, p_i^{(i-1)} = (z_i^{(i-1)})^T A^T e_i$ {not positive definite} 10. $q_i^{(i-1)} = (w_i^{(i-1)})^T A w_i^{(i-1)}, p_i^{(i-1)} = (z_i^{(i-1)})^T A^T z_i^{(i-1)}$ {positive definite} 11. End Do 12. Let $w_i = w_i^{(i-1)}, z_i = z_i^{(i-1)}$ and $d_{ii} = p_i^{(i-1)},$ for $1 \le i \le n$. 13. Return $W = [w_1, \dots, w_n], D = (d_{ii})$ and $Z = [z_1, \dots, z_n].$

When no dropping is applied, Algorithms 1 and 4 compute the same Z, D and W matrices. But the computations are done in different ways. Proposition 2.1 prepares the opportunity to compute parameter $p_i^{(j-1)}$ of Algorithm 4 in the form:

$$p_i^{(j-1)} = a_{ji} - \sum_{k=1}^{j-1} \left(\frac{p_i^{(k-1)}}{p_k^{(k-1)}}\right) q_j^{(k-1)} = a_{ji} - \sum_{k=1}^{j-1} U_{ki} q_j^{(k-1)}.$$
(3.1)

By using parameters $p_i^{(j-1)}$ and $p_j^{(j-1)}$ in Algorithm 4, one can compute entry U_{ji} of matrix U by the relation

$$U_{ji} = \frac{p_i^{(j-1)}}{p_j^{(j-1)}}.$$
(3.2)

Suppose we remove effect of matrix A^T in Algorithm 4. This means that the matrix Z is not computed any more and all the related computations to this matrix will be removed. If in this case, we compute parameter $p_i^{(j-1)}$ and entry U_{ji} by relations (3.1) and (3.2), respectively, then the new following algorithm will be presented:

Algorithm 5 (Prototype version of the left-looking SAINV-Ns)

1. For i = 1, ..., n Do: 2. $w_i^{(0)} = e_i$ 3. For j = 1, ..., i - 1 Do: 4. $q_i^{(j-1)} = (w_i^{(j-1)})^T A e_j$ 5. apply a dropping rule to $q_i^{(j-1)}$

6.
$$w_i^{(j)} = w_i^{(j-1)} - (\frac{q_i^{(j-1)}}{q_i^{(j-1)}})w_j^{(j-1)}$$

for all $l \leq j$ apply a dropping rule to $w_{li}^{(j)}$ $p_i^{(j-1)} = a_{ji} - \sum_{k=1}^{j-1} U_{ki} q_j^{(k-1)}$ $U_{ji} = \frac{p_i^{(j-1)}}{p_j^{(j-1)}}$ 7. 8. 9. apply a dropping rule to U_{ji} 10. 11. End Do End Do $p_i^{(i-1)} = q_i^{(i-1)} = (w_i^{(i-1)})^T Ae_i \{ \text{not positive definite} \}$ $p_i^{(i-1)} = q_i^{(i-1)} = (w_i^{(i-1)})^T Aw_i^{(i-1)} \{ \text{positive definite} \}$ 12.13. 14. End Do

- 14. End Do 15. Let $w_i = w_i^{(i-1)}$ and $d_{ii} = p_i^{(i-1)}$, for $1 \le i \le n$. 16. Return $W = [w_1, \dots, w_n]$, $D = (d_{ii})$ and $U = (U_{ij})$.

When no dropping is applied, Algorithms 3 and 5 compute the same U, D and Wmatrices. Matrix U is computed column-wise in Algorithm 5. We replace the computation format of matrix U in this algorithm by the computation format of this matrix from Algorithm 3. A new algorithm will be presented which is in the form:

Algorithm 6 (Modified version of the left-looking SAINV-Ns)

1. For i = 1, ..., n Do: $w_i^{(0)} = e_i$ 2. For j = 1, ..., i - 1 Do: $q_i^{(j-1)} = (w_i^{(j-1)})^T A e_j$ 3. 4. $\begin{array}{c} apply \ a \ dropping \ rule \ to \ q_i^{(j-1)} \\ w_i^{(j)} = w_i^{(j-1)} - (\frac{q_i^{(j-1)}}{q_i^{(j-1)}}) w_j^{(j-1)} \end{array}$ 5. 6. for all $l \leq j$ apply a dropping rule to $w_{li}^{(j)}$ 7. End Do 8. End Do $p_i^{(i-1)} = q_i^{(i-1)} = (w_i^{(i-1)})^T A e_i$ {not positive definite} $p_i^{(i-1)} = q_i^{(i-1)} = (w_i^{(i-1)})^T A w_i^{(i-1)}$ {positive definite} $p_j^{(i-1)} = a_{ij}, \quad i+1 \le j \le n.$ 9. 10. 11. For k = 1, ..., i - 1 Do: 12.For j = i + 1, ..., n Do: $p_j^{(i-1)} = p_j^{(i-1)} - U_{kj} q_i^{(k-1)}$ 13.14. 15.End Do End Do $U_{ij} = \frac{p_j^{(i-1)}}{p_i^{(i-1)}}, \quad i+1 \le j \le n.$ 16.17. apply a dropping rule to U_{ij} 18. 19. End Do 20. Let $w_i = w_i^{(i-1)}$ and $d_{ii} = p_i^{(i-1)}$, for $1 \le i \le n$.

64

21. Return
$$W = [w_1, \ldots, w_n]$$
, $D = (d_{ii})$ and $U = (U_{ij})$.

In Algorithm 6, matrix U is computed row-wise. This will give the opportunity to use the criterion

$$|U_{ji}| \| U^{-1} e_j \|_{\infty} \le \varepsilon_U, \tag{3.3}$$

to drop entry U_{ji} [11]. Since the whole matrix U is not available, then an approximation of $||U^{-1}e_j||_{\infty}$ is being used. We notice again that an approximation of $||e_j^T U^{-T}||_{\infty}$ is used as an upper bound for $||U^{-1}e_j||_{\infty}$.

Suppose that $\varepsilon_{Q,W}$ is the same drop tolerance parameter for both Q and W matrices. We use criterion

$$|w_{li}^{(j)}| \le \varepsilon_{Q,W},\tag{3.4}$$

to drop entry $w_{li}^{(j)}$ and the criterion

$$\|(\frac{q_i^{(j-1)}}{q_j^{(j-1)}})\|\|W_{:,j}\|_{\infty} \le \varepsilon_{Q,W},\tag{3.5}$$

to drop entry $q_i^{(j-1)}$ [11].

4 Numerical experiments

In this section we have used modified left and right-looking versions of SAINV-Ns as the right preconditioner to solve the linear system of equations with Bicgstab, GMRES(30) and TFQMR [12] methods. The codes were written in Fortran and were compiled with *ifort* Intel compiler. All the experiments were done on a machine with one quad Intel(R) CPU and 8 GB of RAM memory. We have used 106 nonsymmetric matrices of the collection [6] as the test matrices. For all the experiments, the initial and the right hand side vectors of the Ax = b system, are the zero vector and b = Ae where $e = [1, \dots, 1]^T$. For all the experiments, the stopping criterion is:

$$\frac{\|r_k\|_2}{\|r_0\|_2} \le 10^{-10},$$

where r_k and r_0 are the k-th and the initial residuals of the system.

Table 1: nonsymmetric	test matri	ces	
Group/Matrix	n	nnz	sym
Schenk_ IBMSDS/3D_ 51448_ 3D	51448	537038	99%
Bai/af23560	23560	460598	99%
Engwirda/airfoil_ 2d	14214	259688	100%
HB/arc130	130	1037	98%
Bourchtein/atmosmodd	1270432	8814880	76%
Bourchtein/atmosmodj	1270432	8814880	100%
Hamm/bcircuit	68902	375558	100%
VanHeukelum/cage9	3534	41594	100%
VanHeukelum/cage10	11397	150645	100%
VanHeukelum/cage11	39082	559722	100%
VanHeukelum/cage12	130228	2032536	100%
DRIVCAV/cavity05	1182	32632	90%
DRIVCAV/cavity10	2597	76171	94%
DRIVCAV/cavity11	2597	71601	94%
DRIVCAV/cavity12	2597	76258	94%
DRIVCAV/cavity13	2597	71601	94%
DRIVCAV/cavity16	4562	137887	95%
DRIVCAV/cavity17	4562	131735	95%
DRIVCAV/cavity18	4562	138040	95%
DRIVCAV/cavity 19	4562	131735	95%
DRIVCAV/cavity20	4562	138040	95%
hline $Lucifora/cell1$	7055	30082	100%
Lucifora/cell2	7055	30082	100%
Muite/Chebyshev3	4101	36879	50%
$Watson/chem_{-}master1$	40401	201201	100%
Oberwolfach/chipcool0	20082	281150	100%
Oberwolfach/chipcool1	20082	281150	100%
$Bomhof/Circuit_{-} 1$	2624	35823	100%
$Bomhof/Circuit_2$	4510	21199	81%
$Bomhof/Circuit_{-} 3$	12127	48137	77%
Bai/ck104	104	992	83%
Langemyr/comsol	1500	97645	100%
IBM_{-} Austin/coupled	11341	97193	100%
QLi/crashbasis	160000	1750416	55%
Bai/cryg10000	10000	49699	100%
$IBM_{-} EDA/dc1$	116835	766396	85%
$IBM_{-} EDA/dc2$	116835	766396	85%
$IBM_{-} EDA/dc3$	116835	766396	85%
Sanghavi/ecl 32	51993	380415	92%
Averous/epb1	14734	95053	73%

Table 1: nonsymmetric test matrices

	Tal	ble	2:	nonsymme	etric	test	matrices
--	-----	-----	----	----------	-------	-----------------------	----------

Group/Matrix	n	nnz	sym
Averous/epb2	25228	175028	67%
Averous/epb3	84617	463625	67%
FIDAP/ex24	2283	47901	100%
FIDAP/ex29	2870	23754	100%
FIDAP/ex31	3909	91223	100%
FIDAP/ex36	3079	53099	100%
FIDAP/ex37	3565	67591	100%
FIDAP/ex40	7740	456188	100%
Oberwolfach/flowmeter5	9669	67391	100%
$HB/fs_{-} 183_{-} 1$	183	998	42%
$HB/fs_{-}183_{-}6$	183	1000	42%
Garon/garon1	3175	84723	100%
HVDC/hvdc2	189860	1339638	99%
$Schenk_{-} IBMSDS/ibm_{-} matrix_{-}2$	51448	537038	99%
Hollinger/jan 99 jac 040 sc	13694	72734	0%
Hollinger/jan 99 jac 100 sc	34454	190224	0%
Hollinger/jan 99 jac 120 sc	41374	229385	0%
Mathworks/Kaufhold	8765	42471	100%
Norris/lung2	109460	492564	0%
QLi/major basis	160000	1750416	55%
$Schenk_{-} IBMSDS/matrix - 9$	103430	1250518	100%
$Schenk_{-} IBMSDS/matrix - new_{-} 3$	125329	893984	99%
Hamm/memplus	17758	99147	100%
$Sandia/mult_{-} dcop_{-} 01$	25187	193276	61%
$Sandia/mult_dcop_02$	25187	193276	61%
$Sandia/mult_dcop_03$	25187	193216	61%
FEMLAB/ns3Da	20414	1679599	100%
Bai/olm5000	5000	19996	67%
FEMLAB/poisson 3Db	13514	352762	100%
$Grund/poli_{-} large$	15575	33033	0%
LiuWenzhuo/powersim	15838	64424	59%
HB/psmigr 3	3140	543160	48%
Rajat/Raj1	263743	1300261	100%
Rajat/rajat03	7602	32653	100%
Rajat/rajat15	37261	443573	100%
Rajat/rajat16	94294	476766	99%
Rajat/rajat18	94294	479151	63%
Rajat/rajat20	86916	604299	99%
Rajat/rajat22	39899	195429	98%
Rajat/rajat25	87190	606489	99%

Group/Matrix	n	nnz	sym
Rajat/rajat27	20640	97353	96%
Rajat/rajat28	87190	606489	99%
Rajat/rajat31	4690002	20316253	100%
Bova/rma10	46835	2329092	100%
Hamm/scircuit	170998	958936	100%
HB/sherman3	5005	20033	100%
Wang/swang1	3169	20841	100%
Wang/swang2	3169	20841	100%
Brunetiere/thermal	3456	66528	100%
$CEMW/tmt_unsym$	917825	4584801	100%
MathWorks/tomography	500	28726	100%
Norris/torso2	115967	1033473	99%
Norris/torso3	259156	4429042	85%
$IBM_{-} EDA/trans4$	116835	749800	85%
$IBM_{-} EDA/trans5$	116835	749800	85%
$TSOPF/TSOPF_RS_b39_c7$	14098	252446	6%
$TSOPF/TSOPF RS_b39_c19$	38098	684206	6%
$TSOPF/TSOPF_RS_b39_c30$	60098	1079986	6%
TOKAMAK/utm5940	5940	83842	53%
Simon/venkat01	62424	1717792	100%
Simon/venkat25	62624	1717763	100%
Simon/venkat50	62424	1717777	100%
Quaglino/viscoplastic2	32769	381326	57%
Wang/wang3	26064	177168	100%
Wang/wang4	26068	177196	100%
Zhao/Zhao1	33861	166453	92%

Table 3: nonsymmetric test matrices.

In Tables 1-3, column *Group/Matrix* contains the name of the group in which the matrix belongs to and also the name of the matrix. In these tables, n and nnz are the dimension and the number of nonzero entries of the matrix, respectively. Column *sym* is the percentage of the symmetric nonzero pattern of the matrix. In column *sym*, 100% means that the matrix has symmetric nonzero pattern. Otherwise the nonzero pattern of the matrix is not symmetric. If the matrix has symmetric nonzero pattern, then we have reordered the matrix with MLND reordering [8]. Otherwise we have used this reordering on $A + A^T$. With respect to the information provided by [6], all the test matrices are only nonsymmetric and not positive definite.

In Tables 4-6, the notation + means that the stopping criterion has not been satisfied after 5000 number of iterations. In these tables, the columns It and Sec_{ite} are the number

of iterations of the Krylov subspace methods and the iteration time, respectively.

Method	Bice	rstab	GMR	ES(30) TFQMR		
	It	Secito	It	Secito	It	Secito
3D 51448 $3D$	658	$\frac{2.00_{lle}}{3.37}$	+	+	+	+
a f 23560	+	+	+	+	4823	9.24
$airfoil_2d$	+	+	+	+	+	+
arc130	23	10^{-10}	11	10^{-10}	21	10^{-10}
atmosmodd	625	45.59	1974	306.5	1001	81.0
atmosmodj	629	45.82	3901	606.5	833	67.64
bcircuit	+	+	+	+	+	+
cage9	39	10^{-10}	32	10^{-10}	39	0.02
cage10	29	0.02	28	0.02	29	0.01
cage11	39	0.11	30	0.119	31	0.09
cage12	35	0.389	29	0.409	29	0.339
cavity05	1369	0.109	+	+	+	+
cavity10	2343	0.43	+	+	+	+
cavity11	+	+	+	+	+	+
cavity12	+	+	+	+	+	+
cavity13	+	+	+	+	+	+
cavity 16	2665	0.85	+	+	+	+
cavity 17	+	+	+	+	+	+
cavity 18	+	+	+	+	+	+
cavity 19	+	+	+	+	+	+
cavity20	+	+	+	+	+	+
cell1	1387	0.189	+	+	+	+
cell2	+	+	+	+	+	+
Chebyshev3	+	+	+	+	+	+
$chem_{-} master 1$	1033	0.819	+	+	+	+
chipcool0	+	+	+	+	+	+
chipcool1	+	+	+	+	+	+
$Circuit_{-}1$	1463	0.129	661	0.09	327	0.039
Circuit_2	973	0.089	3706	0.579	+	+
Circuit_ 3	+	+	+	+	+	+
<i>ck</i> 104	215	10^{-10}	270	10^{-10}	133	10^{-10}
comsol	+	+	+	+	+	+
coupled	4081	1.86	+	+	2781	1.25
crashbasis	501	5.32	641	8.82	593	6.86
cryg10000	+	+	+	+	+	+
<i>dc</i> 1	+	+	+	+	+	+
dc2	+	+	+	+	+	+
<u>dc3</u>	+	+	+	+	+	+
ecl32	+	+	+	+	+	+
epb1	1033	0.51	2643	1.82	1559	0.809

Table 4: results of iterative methods without preconditioning

Method	Bicostab		GMB	$\frac{10000 \text{ pre}}{\text{ES}(30)}$	TFOMR		
Miciliou	It	Secu	It	Secu	It	Secu	
enh2	847	0.68	1549	1.98	681	0.58	
epb2	+	+	+	+	+	+	
ex24	+	+	+	+	+	+	
ex29	141	0.01	151	0.02	145	0.01	
ex31	+	+	+	+	+	+	
ex36	+	+	+	+	+	+	
ex37	123	0.029	165	0.04	113	0.02	
ex40	+	+	+	+	+	+	
flowmeter5	+	+	+	+	+	+	
fs_ 183_ 1	+	+	+	+	575	0.01	
fs_ 183_ 6	1289	0.01	+	+	853	0.01	
garon1	+	+	+	+	+	+	
hvdc2	+	+	+	+	+	+	
ibm_ matrix_2	700	3.57	+	+	+	+	
jan99jac040sc	+	+	+	+	+	+	
jan99jac100sc	+	+	+	+	+	+	
jan99jac120sc	+	+	+	+	+	+	
Kaufhold	+	+	+	+	+	+	
lung2	+	+	+	+	+	+	
majorbasis	+	+	+	+	+	+	
matrix - 9	3341	34.52	+	+	2747	29.5	
$matrix - new_{-} 3$	+	+	+	+	+	+	
memplus	2899	1.51	+	+	1933	1.02	
$mult_dcop_01$	+	+	+	+	+	+	
$mult_dcop_02$	+	+	+	+	+	+	
$mult_dcop_03$	+	+	+	+	+	+	
ns3Da	+	+	2936	25.53	1573	13.07	
olm5000	+	+	+	+	+	+	
poisson3Db	513	7.53	1019	16.57	733	10.76	
poli_ large	45	0.01	61	0.04	51	0.2	
powersim	+	+	+	+	+	+	
$psmigr_{-} 3$	21	0.029	14	0.029	23	0.04	
Raj1	+	+	+	+	+	+	
rajat03	2457	0.319	+	+	+		
rajat15	+	+	+	+	+	+	
rajat16	+	+	+	+	+	+	
rajat18	+	+	+	+	+	+	
rajat20	+	+	+	+	+	+	
rajat22	+	+	+	+	+	+	
rajat25	+	+	+	+	+	+	

Table 5: results of iterative methods without preconditioning

Method	Bic	gstab	GMRES(30)		TFQMR	
	It	Sec_{ite}	It	Sec_{ite}	It	Sec_{ite}
rajat27	+	+	+	+	+	+
rajat28	+	+	+	+	+	+
rajat31	+	+	+	+	+	+
rma10	+	+	+	+	+	+
scircuit	+	+	+	+	+	+
sherman3	+	+	+	+	+	+
swang1	37	10^{-10}	34	10^{-10}	37	0.01
swang2	65	10^{-10}	71	0.01	77	0.01
thermal	41	0.01	37	0.02	55	0.03
tmt_{-} $unsym$	+	+	+	+	+	+
tomography	+	+	1321	0.1	299	0.02
torso2	79	0.529	63	0.629	89	0.639
torso3	409	9.81	340	10.31	329	8.53
trans4	+	+	+	+	+	+
trans 5	+	+	+	+	+	+
$TSOPF_RS_b39_c7$	+	+	+	+	+	+
$TSOPF_RS_b39_c19$	+	+	+	+	+	+
$TSOPF_RS_b39_c30$	+	+	+	+	+	+
utm5940	+	+	+	+	+	+
venkat01	+	+	+	+	+	+
venkat25	+	+	+	+	+	+
venkat50	+	+	+	+	+	+
viscoplastic2	+	+	+	+	+	+
wang3	+	+	+	+	+	+
wang4	+	+	+	+	+	+
Zhao1	97	0.09	49	0.069	51	0.04

Table 6: results of iterative methods without preconditioning

In Tables 7-9 the density of both left and right-looking versions are defined by:

$$density = \frac{nnz(U) + nnz(W) + n}{nnz(A)},$$

in which nnz(U) and nnz(W) are the number of nonzero entries of the U and W matrices. In these tables, Sec_p is the preconditioning time. $\varepsilon_{Q,W}$ is the drop tolerance parameter for both Q and W matrices and ε_U is the drop tolerance parameter for matrix U.

Mathad	loft looking SAINV Ng				right-looking SAINV-Ns				
Method	le	eit-lookii	ig SAIN	V-INS	right-looking SAIN V-INS				
2D 51440 2D	ε_U	$\varepsilon_{Q,W}$	Sec_p	density	ε_U	$\varepsilon_{Q,W}$	Sec_p	density	
3D_ 51448_ 3D	0.01	0.01	0.659	1.02	0.01	0.01	285.9	13.77	
af23560	0.01	0.01	3.01	71	0.01	0.01	375.01	53.9	
airfoil_2d	0.01	0.01	0.17	95	0.01	0.01	31.52	25.33	
arc130	0.01	0.01	10^{-15}	0.4	0.01	0.01	0.28	0.8	
atmosmodd	0.01	0.01	14.97	4.63	0.01	0.01	51.08	5.29	
atmosmodj	0.01	0.01	15.22	4.63	0.01	0.01	51.29	5.29	
bcircuit	0.01	0.01	0.129	1.69	0.01	0.01	0.6	2.01	
cage 9	0.01	0.01	0.019	1.24	0.01	0.01	0.31	1.24	
cage10	0.01	0.01	0.09	1.14	0.01	0.01	0.49	1.139	
cage11	0.01	0.01	0.36	1.10	0.01	0.01	1.34	1.1	
cage12	0.01	0.01	1.44	1.07	0.01	0.01	5.48	1.07	
cavity05	0.01	0.01	0.02	1.54	0.01	0.01	0.399	4.23	
cavity10	0.01	0.01	0.05	1.34	0.01	0.01	0.929	5.77	
cavity11	0.01	0.01	0.08	1.43	0.01	0.01	0.86	5.31	
cavity 12	0.01	0.01	0.09	1.83	0.01	0.01	0.94	5.78	
cavity 13	0.01	0.01	0.099	1.97	0.01	0.01	0.84	5.32	
cavity 16	0.01	0.01	0.09	1.38	0.01	0.01	2.82	7.86	
cavity17	0.01	0.01	0.09	1.36	0.01	0.01	2.6	7.31	
cavity18	0.01	0.01	0.129	1.47	0.01	0.01	2.74	7.92	
cavity19	0.01	0.01	0.119	1.48	0.01	0.01	2.49	7.3	
cavity20	0.01	0.01	0.15	1.65	0.01	0.01	2.75	7.9	
cell1	0.01	0.01	0.04	5.33	0.01	0.01	0.38	7.4	
cell2	0.01	0.01	0.04	5.33	0.01	0.01	0.47	7.49	
Chebyshev3	0.01	0.01	10^{-15}	1.85	0.01	0.01	0.299	1.87	
chem_ master1	0.01	0.01	0.25	5.73	0.01	0.01	1.12	7.14	
chipcool0	0.01	0.01	0.35	2.87	0.01	0.01	1.09	3.12	
chipcool1	0.01	0.01	0.409	2.86	0.01	0.01	1.08	3.12	
Circuit_ 1	0.01	0.01	0.059	0.85	0.01	0.01	0.299	0.858	
$Circuit_{-} 2$	0.01	0.01	0.02	1.35	0.01	0.01	0.25	1.38	
$Circuit_{-} 3$	0.01	0.01	0.15	1.74	0.01	0.01	0.48	3.76	
ck104	0.01	0.01	10^{-15}	1.03	0.01	0.01	0.219	1.39	
comsol	0.01	0.01	0.25	2.33	0.01	0.01	0.429	1.68	
coupled	0.01	0.01	0.45	1.76	0.01	0.01	0.77	1.9	
crashbasis	0.01	0.01	0.89	2.1	0.01	0.01	2.52	2.18	
cryg10000	0.01	0.01	0.05	4.63	0.01	0.01	3.25	29.65	
dc1	0.01	0.01	64.24	0.978	0.01	0.01	76.03	1.05	
dc2	0.01	0.01	64.97	0.965	0.01	0.01	76.92	1.04	
dc3	0.01	0.01	65.04	0.965	0.01	0.01	76.7	1.04	
ecl32	0.01	0.01	5.86	9.69	0.01	0.01	986.1	127.39	
epb1	0.01	0.01	0.119	5.03	0.01	0.01	0.589	6.41	

Table 7: Properties of the preconditioners.

Table 8: Properties of the preconditioners.

Method	left-looking SAINV-Ns		right-looking SAINV-Ns					
	ε_U	$\varepsilon_{Q,W}$	Sec_p	density	ε_U	$\varepsilon_{Q,W}$	Sec_p	density
epb2	0.01	0.01	0.229	4.62	0.01	0.01	28.11	32.56
epb3	0.01	0.01	0.709	5.44	0.01	0.01	107.79	45.54
ex24	0.01	0.01	0.22	5.29	0.01	0.01	0.529	5.61
ex29	0.01	0.01	0.01	1.75	0.01	0.01	0.24	1.75
ex31	0.01	0.01	0.489	3.29	0.01	0.01	0.959	3.87
ex36	0.01	0.01	0.09	2.81	0.01	0.01	0.58	5.5
ex37	0.01	0.01	0.019	0.699	0.01	0.01	0.26	0.705
ex40	0.01	0.01	0.699	1.14	0.01	0.01	31.89	10.45
flowmeter5	0.01	0.01	0.08	4.65	0.01	0.01	0.46	5.68
fs_ 183_ 1	0.01	0.01	10^{-15}	1.22	0.01	0.01	0.21	1.18
fs_ 183_ 6	0.01	0.01	10^{-15}	1.15	0.01	0.01	0.219	1.16
garon1	0.01	0.01	0.09	1.62	0.01	0.01	2.36	9.72
hvdc2	0.01	0.01	1.26	3.48	0.01	0.01	9.17	6.39
$ibm_{-} matrix_{-}2$	0.01	0.01	0.679	1.03	0.01	0.01	152.9	8.6
jan99jac040sc	0.01	0.01	1.6	12.62	0.01	0.01	42.31	75.31
jan 99 jac 100 sc	0.01	0.01	5.93	15.51	0.01	0.01	233.02	110.95
jan 99 jac 120 sc	0.01	0.01	7.89	16.41	0.01	0.01	263.18	133.79
Kaufhold	0.01	0.01	10^{-15}	0.472	0.01	0.01	0.24	0.47
lung2	0.01	0.01	0.109	1.63	0.01	0.01	1.07	3.95
majorbasis	0.01	0.01	0.57	1.38	0.01	0.01	635.27	26.57
matrix - 9	0.01	0.01	1.57	1.66	0.01	0.01	10465.8	88.77
$matrix - new_{-} 3$	0.01	0.01	0.9	0.573	0.01	0.01	1095.15	16.86
memplus	0.01	0.01	0.039	0.668	0.01	0.01	0.32	0.781
$mult_dcop_01$	0.01	0.01	3.93	7.72	0.01	0.01	10.37	15.13
$mult_dcop_02$	0.01	0.01	1.95	1.28	0.01	0.01	5.71	9.51
$mult_dcop_03$	0.01	0.01	2.22	0.785	0.01	0.01	6.23	11.17
ns3Da	0.01	0.01	15.38	2.81	0.01	0.01	874.11	17.38
olm5000	0.01	0.01	0.01	7.08	0.01	0.01	0.3	7.25
poisson3Db	0.01	0.01	2.93	1.78	0.01	0.01	6.85	1.9
poli_large	0.01	0.01	0.02	2.8	0.01	0.01	0.28	3.45
powersim	0.01	0.01	0.02	2.79	0.01	0.01	0.32	3.3
$psmigr_{-} 3$	0.01	0.01	0.129	0.97	0.01	0.01	14.01	2.51
Raj1	0.01	0.01	13.51	2.73	0.01	0.01	57.35	4.32
rajat03	0.01	0.01	0.029	2.82	0.01	0.01	0.29	2.41
rajat15	0.01	0.01	0.589	1.40	0.01	0.01	1.97	2.31
rajat16	0.01	0.01	6.82	1.35	0.01	0.01	7.25	1.00
rajat18	0.01	0.01	6.79	1.54	0.01	0.01	7.3	1.32
rajat20	0.01	0.01	7.55	1.61	0.01	0.01	8.12	1.47
rajat22	0.01	0.01	0.259	1.2	0.01	0.01	0.799	2.71
rajat25	0.01	0.01	7.32	1.51	0.01	0.01	7.97	1.45

Method	left-looking SAINV-Ns			ri	ight-looking SAINV-Ns			
	ε_U	$\varepsilon_{Q,W}$	Sec_p	density	ε_U	$\varepsilon_{Q,W}$	Sec_p	density
rajat27	0.01	0.01	0.899	1.99	0.01	0.01	0.389	2.35
rajat28	0.01	0.01	7.69	1.49	0.01	0.01	8.46	1.49
rajat31	0.01	0.01	15.63	1.81	0.01	0.01	187.92	1.95
rma10	0.01	0.01	9.57	2.94	0.01	0.01	277.22	15.24
scircuit	0.01	0.01	0.35	1.83	0.01	0.01	1.48	2.44
sherman3	0.01	0.01	0.02	4.25	0.01	0.01	0.34	5.03
swang1	0.01	0.01	10^{-15}	1.39	0.01	0.01	0.239	1.39
swang2	0.01	0.01	0.009	1.43	0.01	0.01	0.229	1.43
thermal	0.01	0.01	0.02	0.625	0.01	0.01	0.239	0.626
$tmt_{-} unsym$	0.01	0.01	5.93	5.938	0.01	0.01	21.02	7.04
tomography	0.01	0.01	0.039	1.19	0.01	0.01	0.25	1.19
torso2	0.01	0.01	0.369	1.38	0.01	0.01	0.95	1.38
torso3	0.01	0.01	0.849	0.478	0.01	0.01	2.16	0.482
trans4	0.01	0.01	68.16	1.04	0.01	0.01	80.07	1.06
trans5	0.01	0.01	70.05	1.056	0.01	0.01	81.92	1.07
$TSOPF_RS_b39_c7$	0.01	0.01	0.159	1.29	0.01	0.01	0.77	3.02
$TSOPF_RS_b39_c19$	0.01	0.01	0.37	1.3	0.01	0.01	1.96	3.39
$TSOPF_RS_b39_c30$	0.01	0.01	0.58	1.22	0.01	0.01	2.43	3.02
utm5940	0.01	0.01	0.66	8.03	0.01	0.01	8.3	25.44
venkat01	0.01	0.01	3.6	3.11	0.01	0.01	18.12	4.83
venkat25	0.01	0.01	8.71	5.1	0.01	0.01	693.17	37.79
venkat50	0.01	0.01	9.12	5.22	0.01	0.01	684.78	37.83
viscoplastic2	0.01	0.01	34.94	26.6	0.01	0.01	91.9	41.78
wang3	0.01	0.01	0.349	5.31	0.01	0.01	5.32	13.49
wang4	0.01	0.01	0.27	4.48	0.01	0.01	503.38	153.92
Zhao1	0.01	0.01	0.27	4.57	0.01	0.01	365.25	195.66

Table 9: Properties of the preconditioners.

In Tables 10-18, results of Krylov subspace methods has been reported. In these tables, It is the number of iterations and Sec_{tot} is:

$$Sec_{tot} = Sec_p + Sec_{ite},$$

where Sec_{ite} is the iteration time of the method. For both left and right-looking versions of SAINV-Ns preconditioner, when the pivot entry is less than the machine precision, then we have replaced it by the square root of the machine precision.

Method	left-lo	eft-looking SAINV-Ns		right-looking SAINV-Ns		
	It	Sec_{tot}	It	Sec_{tot}		
$3D_{-} 51448_{-} 3D$	127	2.15	+	+		
af23560	71	4.28	+	+		
$airfoil_{-}2d$	95	0.6	+	+		
arc130	3	10^{-15}	+	+		
atmosmodd	115	54.52	97	82.77		
atmosmodj	133	60.84	111	87.75		
bcircuit	599	4.1	213	2.03		
cage9	9	1.99	9	0.33		
cage10	9	0.109	11	0.51		
cage11	11	0.459	11	5.76		
cage12	11	1.77	11	0.28		
cavity05	84	4.0	+	+		
cavity10	149	0.1	+	+		
cavity11	449	0.31	+	+		
cavity12	1289	0.63	+	+		
cavity13	2473	1.16	+	+		
cavity16	207	0.269	+	+		
cavity 17	421	0.419	+	+		
cavity18	773	0.819	+	+		
cavity19	1327	1.25	+	+		
cavity20	1661	1.68	+	+		
cell1	43	7.00	33	0.4		
cell2	59	6.99	23	0.48		
Chebyshev3	+	+	+	+		
$chem_{-} master 1$	73	0.84	53	1.55		
chipcool0	63	0.78	55	1.43		
chipcool1	53	0.769	45	1.36		
Circuit_ 1	9	0.0599	+	+		
$Circuit_{-} 2$	11	0.02	157	0.27		
Circuit_ 3	875	0.599	+	+		
<i>ck</i> 104	11	10^{-15}	23	0.219		
comsol	465	0.519	295	0.609		
coupled	19	0.47	33	0.809		
crashbasis	11	1.27	41	3.75		
<i>cryg</i> 10000	1955	1.55	+	+		
dc1	23	64.48	19	76.22		
dc2	21	65.19	25	77.17		
dc3	31	65.36	59	77.29		
ecl32	121	8.31	+	+		
epb1	83	0.399	57	0.77		

Table 10: Bicgstab method with right preconditioner

10010 11.	Diegota	b mounda wrom ng	no pro	Condition
Method	left-lo	oking SAINV-Ns	right	-looking SAINV-Ns
	It	Sec_{tot}	It	Sec_{tot}
epb2	33	0.439	+	+
epb3	109	2.65	+	+
ex24	2287	1.449	+	+
ex29	7	0.01	7	0.24
ex31	325	1.05	+	+
ex36	221	0.18	+	+
ex37	11	0.0199	11	0.26
ex40	2325	12.39	+	+
flowmeter5	55	0.17	35	0.52
fs_ 183_ 1	7	10^{-15}	61	0.21
fs_ 183_ 6	5	10^{-15}	45	0.219
aaron1	1607	0.879	+	+
hvdc2	+	+	+	+
ibm_ matrix_2	131	2.25	+	+
jan99jac040sc	23	1.72	+	+
jan99jac100sc	41	6.56	+	+
jan99jac120sc	37	8.6	+	+
Kaufhold	3	10^{-15}	3	0.24
lung2	7	0.18	+	+
majorbasis	11	0.84	+	+
matrix - 9	55	3.3	+	+
$matrix - new_{-} 3$	71	2.52	+	+
memplus	49	0.069	17	0.34
$mult_dcop_01$	37	4.2	17	0.339
$mult_dcop_02$	9	1.96	+	+
$mult_dcop_03$	11	2.25	+	+
ns3Da	55	16.97	+	+
olm5000	49	0.02	+	+
poisson3Db	83	6.32	73	9.61
poli_ large	7	0.0299	11	0.289
powersim	39	0.07	29	0.34
$psmigr_{-} 3$	13	0.159	+	+
Raj1	1455	62.03	+	+
rajat03	19	0.029	+	+
rajat15	273	3.23	243	3.62
rajat16	475	11.21	+	+
rajat18	515	11.08	+	+
rajat20	1283	20.56	+	+
rajat22	495	1.57	+	+
rajat25	579	12.96	+	+

Table 11: Bicgstab method with right preconditioner

Method	left-looking SAINV-Ns			right-looking SAINV-Ns		
	It	Sec_{tot}	It	Sec_{tot}		
rajat27	161	0.3	+	+		
rajat28	441	11.95	+	+		
rajat31	17	23.74	+	+		
rma10	+	+	+	+		
scircuit	861	16.19	+	+		
sherman3	75	0.05	43	0.36		
swang1	9	10^{-15}	9	0.239		
swang2	9	9.994	9	0.229		
thermal	9	0.02	7	0.239		
tmt_{-} $unsym$	1113	236.43	727	166.02		
tomography	11	0.0399	11	0.26		
torso2	9	0.52	9	1.09		
torso3	9	1.23	19	2.89		
trans4	7	68.24	9	80.17		
trans 5	11	70.19	13	82.07		
$TSOPF_RS_b39_c7$	141	0.539	+	+		
$TSOPF_RS_b39_c19$	103	1.21	+	+		
$TSOPF_RS_b39_c30$	125	2.13	+	+		
utm5940	539	2.58	+	+		
venkat01	17	4.26	37	19.83		
venkat 25	101	13.96	+	+		
venkat50	149	16.98	+	+		
viscoplastic2	15	35.52	+	+		
wang3	57	0.759	+	+		
wang4	47	0.56	+	+		
Zhao1	9	0.33	+	+		

Table 12: Bicgstab method with right preconditioner

Method	left-lo	oking SAINV-Ns	right-looking SAINV-Ns		
	It	Sec _{tot}	It	Sec _{tot}	
3D_ 51448_ 3D	89	1.9	+	+	
af23560	62	4.17	+	+	
airfoil_2d	248	1.48	+	+	
arc130	3	10^{-15}	+	+	
atmosmodd	136	82.61	108	102.91	
atmosmodj	136	82.94	110	103.96	
bcircuit	853	8.48	175	2.27	
cage9	9	0.029	9	0.31	
cage10	9	0.119	9	0.5	
cage11	10	0.449	10	1.42	
cage12	10	1.78	10	5.76	
cavity05	83	0.04	+	+	
cavity10	625	0.34	+	+	
cavity11	+	+	+	+	
cavity12	+	+	+	+	
cavity13	+	+	+	+	
cavity16	+	+	+	+	
cavity17	+	+	+	+	
cavity18	+	+	+	+	
cavity19	+	+	+	+	
cavity20	+	+	+	+	
cell1	26	0.06	26	0.4	
cell2	18	0.049	16	0.48	
Chebyshev3	88	0.04	+	+	
$chem_{-}master1$	75	1.00	48	1.56	
chipcool0	60	0.81	53	1.47	
chipcool1	54	0.819	40	1.379	
Circuit_1	7	0.059	205	0.349	
$Circuit_2$	9	0.02	51	0.27	
Circuit_ 3	1853	1.79	+	+	
<i>ck</i> 104	10	10^{-15}	13	0.219	
comsol	+	+	907	0.92	
coupled	15	0.48	21	0.799	
crashbasis	10	1.26	29	3.57	
<i>cryg</i> 10000	+	+	+	+	
dc1	13	64.42	14	76.22	
dc2	16	65.21	20	77.2	
dc3	21	65.37	26	77.09	
ecl32	233	11.16	+	+	
epb1	91	0.449	58	0.819	

Table 13: GMRES(30) method with right preconditioner.

Method	left-looking SAINV-Ns		right-looking SAINV-Ns		
	It	Sec_{tot}	It	Sec_{tot}	
epb2	27	0.419	+	+	
epb3	105	2.97	+	+	
ex24	+	+	+	+	
ex29	7	0.01	7	0.25	
ex31	1300	3.09	+	+	
ex36	1329	0.78	+	+	
ex37	10	0.0199	10	0.26	
ex40	+	+	+	+	
flow meter 5	61	0.22	25	0.51	
$fs_{-} 183_{-} 1$	6	10^{-15}	15	0.21	
$fs_{-} 183_{-} 6$	4	10^{-15}	4	0.22	
garon1	2014	1.319	+	+	
hvdc2	1828	78.48	+	+	
$ibm_{-} matrix_{-}2$	91	1.98	+	+	
jan 99 jac 040 sc	19	1.72	+	+	
jan 99 jac 100 sc	29	6.43	+	+	
jan 99 jac 120 sc	29	8.5	+	+	
Kaufhold	2	10^{-15}	2	0.25	
lung2	6	0.2	+	+	
majorbasis	10	0.89	+	+	
matrix - 9	49	3.319	+	+	
$matrix - new_{-} 3$	60	2.65	+	+	
memplus	38	0.089	14	0.34	
$mult_{-} dcop_{-} 01$	21	4.11	+	+	
$mult_dcop_02$	8	1.97	+	+	
$mult_{-} dcop_{-} 03$	8	2.25	+	+	
ns3Da	51	16.88	+	+	
olm5000	26	0.02	+	+	
poisson 3Db	71	6.14	68	9.63	
$poli_{-} large$	6	0.029	8	0.289	
powersim	6	0.029	23	0.369	
$psmigr_{-} 3$	11	0.149	+	+	
Raj1	+	+	+	+	
rajat03	12	0.039	49	0.329	
rajat15	176	1.91	486	6.12	
rajat16	77	7.88	+	+	
rajat18	1702	28.91	+	+	
rajat20	1718	31.83	+	+	
rajat22	2469	11.9	+	+	
rajat25	+	+	+	+	

Table 14: GMRES(30) method with right preconditioner.

Method	left-lo	oking SAINV-Ns	right-looking SAINV-Ns		
	It	Sec_{tot}	It	Sec_{tot}	
rajat27	478	1.24	+	+	
rajat28	241	11.05	+	+	
rajat31	14	26.9	+	+	
rma10	329	24.69	+	+	
scircuit	2199	58.07	+	+	
sherman3	100	0.06	29	0.369	
swang1	7	10^{-15}	7	0.239	
swang2	8	0.00999	8	0.229	
thermal	7	0.029	7	0.2399	
tmt_{-} $unsym$	+	+	+	+	
tomography	10	0.049	10	0.25	
torso2	8	0.529	8	11	
torso3	8	1.259	14	2.8	
trans4	6	68.26	7	80.16	
trans5	10	70.19	9	82.05	
$TSOPF_RS_b39_c7$	54	0.34	+	+	
$TSOPF_RS_b39_c19$	55	0.91	+	+	
$TSOPF_RS_b39_c30$	55	1.41	+	+	
utm5940	+	+	+	+	
venkat01	15	4.22	34	19.81	
venkat 25	102	14.3	+	+	
venkat50	155	17.73	+	+	
viscoplastic2	14	35.51	+	+	
wang3	55	0.789	+	+	
wang4	40	0.56	+	+	
Zhao1	9	0.34	+	+	

Table 15: GMRES(30) method with right preconditioner.

Method	left-lo	oking SAINV-Ns	right	-looking SAINV-Ns
	It	Sec_{tot}	It	Sec_{tot}
$3D_{-} 51448_{-} 3D$	139	2.33	+	+
af23560	69	4.23	+	+
$airfoil_{-}2d$	101	0.63	+	+
arc130	3	10^{-15}	+	+
atmosmodd	117	55.93	97	83.54
atmosmodj	119	56.89	101	84.95
bcircuit	+	+	257	2.4
cage9	11	0.019	11	0.32
cage10	11	0.109	11	0.51
cage11	13	0.47	13	1.43
cage12	13	1.86	11	5.77
cavity05	93	0.03	+	+
cavity10	143	0.1	+	+
cavity11	533	0.29	+	+
cavity12	1201	0.58	+	+
cavity 13	1609	0.799	+	+
cavity16	197	0.259	+	+
cavity 17	403	0.409	+	+
cavity18	779	0.819	+	+
cavity19	1409	1.3	+	+
cavity20	1665	1.68	+	+
cell1	43	0.06	41	0.41
cell2	+	+	19	0.5
Chebyshev3	+	+	+	+
chem_ master1	79	0.899	61	1.6
chipcool0	69	0.84	61	1.48
chipcool1	61	0.829	51	1.41
Circuit_ 1	9	0.0599	915	0.459
$Circuit_{-} 2$	11	0.02	407	0.319
Circuit_ 3	787	0.549	+	+
ck104	11	10^{-15}	23	0.219
comsol	759	0.709	161	0.549
coupled	19	0.47	35	0.799
crashbasis	11	1.25	43	3.81
cryg10000	+	+	+	+
dc1	17	64.42	17	76.21
dc2	21	65.2	35	77.28
dc3	31	65.36	71	77.41
ecl32	109	8.09	+	+
epb1	91	0.419	65	0.8

Table 16: TFQMR method with right preconditioner.

Table 17.	TL CIM	a methoa with rig.	nt pret	onumoner.	
Method	left-lo	oking SAINV-Ns	right-looking SAINV-		
	It	Sec_{tot}	It	Sec_{tot}	
epb2	33	0.409	+	+	
epb3	119	2.86	+	+	
ex24	+	+	+	+	
ex29	7	0.02	7	0.25	
ex31	479	1.34	+	+	
ex36	233	0.19	+	+	
ex37	11	0.0199	11	0.27	
ex40	1731	9.44	+	+	
flow meter 5	65	0.18	39	0.52	
fs_ 183_ 1	7	10^{-15}	35	0.21	
fs_ 183_ 6	5	10^{-15}	45	0.2199	
garon1	865	1.62	+	+	
hvdc2	1497	53.26	+	+	
$ibm_{-} matrix_{-}2$	127	2.29	+	+	
jan 99 jac 040 sc	23	1.72	+	+	
jan 99 jac 100 sc	39	6.53	+	+	
jan 99 jac 120 sc	37	8.63	+	+	
Kaufhold	3	10^{-15}	3	0.24	
lung2	7	0.179	+	+	
major basis	11	0.86	+	+	
matrix - 9	71	3.87	+	+	
$matrix - new_{-} 3$	91	3.04	+	+	
memplus	45	0.079	17	0.34	
$mult_dcop_01$	39	4.21	+	+	
$mult_{-} dcop_{-} 02$	9	1.96	+	+	
$mult_{-} dcop_{-} 03$	11	2.25	+	+	
ns3Da	55	16.96	+	+	
olm5000	47	0.03	+	+	
poisson 3Db	75	6.00	77	9.72	
$poli_{-} large$	7	0.020004	9	0.289	
powersim	41	0.07	29	0.36	
$psmigr_{-} 3$	13	0.149	+	+	
Raj1	+	+	+	+	
rajat03	19	0.039	397	0.42	
rajat15	179	1.68	461	5.15	
rajat16	397	10.67	+	+	
rajat18	603	12.14	+	+	
rajat20	639	14.27	+	+	
rajat22	711	2.31	+	+	
rajat25	487	2.21	+	+	

Table 17: TFQMR method with right preconditioner.

Method	left-lo	oking SAINV-Ns	right-looking SAINV-Ns		
	It	Sec_{tot}	It	Sec_{tot}	
rajat27	171	0.309	+	+	
rajat28	741	15.32	+	+	
rajat31	19	25.08	+	+	
rma10	+	+	+	+	
scircuit	1307	25.39	+	+	
sherman3	81	0.04	43	0.369	
swang1	9	0.01	9	0.2399	
swang2	9	0.0099	9	0.239	
thermal	9	0.02	7	0.25	
tmt_{-} $unsym$	1595	346.29	1247	273.109	
tomography	13	0.0399	13	0.26	
torso2	9	0.529	9	1.11	
torso3	9	1.229	19	2.94	
trans4	7	68.25	9	80.15	
trans5	13	70.21	13	82.06	
$TSOPF_RS_b39_c7$	147	0.569	+	+	
$TSOPF_RS_b39_c19$	+	+	+	+	
$TSOPF_RS_b39_c30$	+	+	+	+	
utm5940	547	2.58	+	+	
venkat01	17	4.28	39	19.95	
venkat25	111	14.52	+	+	
venkat50	157	17.47	+	+	
viscoplastic2	15	35.54	+	+	
wang3	69	0.849	+	+	
wang4	45	0.54	+	+	
Zhao1	9	0.33	+	+	

Table 18: TFQMR method with right preconditioner.

Tables 7-9 show that for almost all matrices, the density of the modified right-looking version is bigger than the density of the modified left-looking version. But as it is clear from Tables 10-18, for almost all matrices, the modified left-looking version makes three krylov subspaces methods convergent in less number of iterations than the modified right-looking version. There are some examples in which the density of the modified right-looking version is much bigger than the density of the modified left-looking version, but the Krylov subspace methods are divergent with modified right-looking version and are convergent with modified left-looking version.

In Tables 7-9, the Sec_p of the modified left-looking version is less than the Sec_p of the modified right-looking version except for matrix rajat27.

After analyzing the densities of both modified left and right-looking versions, one can conclude that for almost all matrices, the modified right-looking version tends to be denser than the modified left-looking version. With respect to the results of Krylov subspace methods, it can also be concluded that for almost all matrices, the modified left-looking version is more robust than the modified right-looking version to reduce the number of iterations of the Krylov subspace methods.

All the experiments have also been done with $\varepsilon_U = \varepsilon_{Q,W} = 0.1$ for both modified left and right-looking versions. The results have been reported in Tables 19-30. In these tables, ε_U , $\varepsilon_{Q,W}$, density, It, Sec_p and Sec_{tot} have the same meanings as before. The results of these tables also confirm the previous conclusions.

Table 19:	Properties of th	e preconditioners.
-----------	------------------	--------------------

Method		left-looking SAINV-Ns				right-looking SAINV-Ns			
	ε_U	$\varepsilon_{Q,W}$	Sec_p	density	ε_U	$\varepsilon_{Q,W}$	Sec_p	density	
$3D_{-} 51448_{-} 3D$	0.1	0.1	0.18	0.349	0.1	0.1	89.54	5.62	
af23560	0.1	0.1	0.279	1.23	0.1	0.1	156.23	26.65	
$airfoil_{-}2d$	0.1	0.1	0.05	0.599	0.1	0.1	13.73	14.03	
arc130	0.1	0.1	10^{-15}	0.331	0.1	0.1	0.22	0.868	
atmosmodd	0.1	0.1	2.81	1.257	0.1	0.1	7.24	1.26	
atmosmodj	0.1	0.1	2.819	1.257	0.1	0.1	7.47	1.26	
bcircuit	0.1	0.1	0.0899	1.08	0.1	0.1	0.47	1.37	
cage9	0.1	0.1	10^{-15}	0.262	0.1	0.1	0.22	0.263	
cage10	0.1	0.1	0.01	0.198	0.1	0.1	0.25	0.198	
cage11	0.1	0.1	0.04	0.164	0.1	0.1	0.319	0.165	
cage12	0.1	0.1	0.119	0.138	0.1	0.1	0.59	0.138	
cavity05	0.1	0.1	0.01	0.482	0.1	0.1	0.42	4.13	
cavity10	0.1	0.1	0.009	0.384	0.1	0.1	0.919	5.71	
cavity11	0.1	0.1	0.01	0.367	0.1	0.1	0.889	5.22	
cavity12	0.1	0.1	0.01	0.447	0.1	0.1	0.909	5.78	
cavity13	0.1	0.1	0.02	0.478	0.1	0.1	0.839	5.25	
cavity16	0.1	0.1	0.02	0.302	0.1	0.1	2.83	7.76	
cavity17	0.1	0.1	0.020004	0.282	0.1	0.1	2.4	7.17	
cavity18	0.1	0.1	0.20004	0.314	0.1	0.1	2.76	7.78	
cavity19	0.1	0.1	0.30014	0.301	0.1	0.1	2.38	7.18	
cavity20	0.1	0.1	0.20004	0.341	0.1	0.1	2.92	7.89	
cell1	0.1	0.1	10^{-15}	1.77	0.1	0.1	0.25	1.95	
cell2	0.1	0.1	0.0199	1.78	0.1	0.1	0.239	1.95	
Chebyshev3	0.1	0.1	10^{-15}	1.345	0.1	0.1	0.309	1.3	
chem_ master1	0.1	0.1	0.0599	1.75	0.1	0.1	0.369	1.86	
chipcool0	0.1	0.1	0.0599	0.641	0.1	0.1	0.42	0.649	
chipcool1	0.1	0.1	0.05	0.639	0.1	0.1	0.379	0.647	
Circuit_ 1	0.1	0.1	0.0599	0.496	0.1	0.1	0.32	0.5	
Circuit_ 2	0.1	0.1	10^{-15}	0.965	0.1	0.1	0.27	0.934	
Circuit_ 3	0.1	0.1	0.0699	1.25	0.1	0.1	0.369	1.91	
ck104	0.1	0.1	10^{-15}	0.803	0.1	0.1	0.26	1.12	
comsol	0.1	0.1	0.02	0.381	0.1	0.1	0.25	0.315	
coupled	0.1	0.1	0.119	0.774	0.1	0.1	0.38	0.819	
crashbasis	0.1	0.1	0.309	1.01	0.1	0.1	1.05	1.11	
<i>cryg</i> 10000	0.1	0.1	0.0199	1.66	0.1	0.1	0.45	4.64	
dc1	0.1	0.1	52.67	0.79	0.1	0.1	71.13	0.84	
dc2	0.1	0.1	53.75	0.775	0.1	0.1	71.41	0.824	
dc3	0.1	0.1	55.27	0.782	0.1	0.1	71.84	0.831	
ecl32	0.1	0.1	0.669	2.53	0.1	0.1	862.21	108.07	
epb1	0.1	0.1	0.0299	1.35	0.1	0.1	0.27	1.51	

	1	- 4 11-		$\frac{\text{OI VHO PIO}}{\text{V N}_{-}}$	right looking CAINV Ng				
Method	1	ert-look	Ing SAIN	V-INS	right-looking SAIN			V-INS	
10	ε_U	$\varepsilon_{Q,W}$	Sec_p	aensity	ε_U	$\varepsilon_{Q,W}$	Sec_p	aensity	
<i>ep62</i>	0.1	0.1	0.05	1.13	0.1	0.1	0.339	1.32	
<i>epb3</i>	0.1	0.1	0.15	1.42	0.1	0.1	0.589	1.59	
<i>ex24</i>	0.1	0.1	0.22	4.82	0.1	0.1	0.54	5.71	
ex29	0.1	0.1	10-13	0.72	0.1	0.1	0.22	0.697	
ex31	0.1	0.1	0.36	2.187	0.1	0.1	0.63	2.31	
ex36	0.1	0.1	0.0099	0.632	0.1	0.1	0.55	4.71	
ex37	0.1	0.1	10^{-15}	0.197	0.1	0.1	0.239	0.196	
ex40	0.1	0.1	0.0599	0.184	0.1	0.1	40.46	12.05	
flow meter 5	0.1	0.1	0.02	1.35	0.1	0.1	0.269	1.41	
$fs_{-} 183_{-} 1$	0.1	0.1	10^{-15}	1.02	0.1	0.1	0.21	1.01	
$fs_{-} 183_{-} 6$	0.1	0.1	10^{-15}	0.925	0.1	0.1	0.21	1.13	
garon1	0.1	0.1	9.99	0.395	0.1	0.1	2.05	8.24	
hvdc2	0.1	0.1	0.369	1.35	0.1	0.1	1.68	2.04	
$ibm_{-} matrix_{-}2$	0.1	0.1	0.179	0.351	0.1	0.1	47.52	3.86	
jan99jac040sc	0.1	0.1	0.199	3.76	0.1	0.1	40.08	71.45	
jan99jac100sc	0.1	0.1	0.65	4.49	0.1	0.1	235.08	109.65	
jan99jac120sc	0.1	0.1	0.88	4.79	0.1	0.1	349.64	125.56	
Kaufhold	0.1	0.1	0.01	0.454	0.1	0.1	0.23	0.454	
lung2	0.1	0.1	0.08	1.28	0.1	0.1	0.71	2.61	
majorbasis	0.1	0.1	0.24	0.778	0.1	0.1	690.09	28.54	
matrix - 9	0.1	0.1	0.349	0.496	0.1	0.1	6308.2	53.17	
$matrix - new_{-} 3$	0.1	0.1	0.229	0.225	0.1	0.1	1037.95	15.77	
memplus	0.1	0.1	0.01	0.49	0.1	0.1	0.26	0.502	
$mult_{-} dcop_{-} 01$	0.1	0.1	2.619	1.67	0.1	0.1	8.59	12.27	
$mult_{-} dcop_{-} 02$	0.1	0.1	1.98	0.65	0.1	0.1	4.73	7.46	
$mult_dcop_03$	0.1	0.1	2.07	0.733	0.1	0.1	3.2	2.41	
ns3Da	0.1	0.1	1.69	1.36	0.1	0.1	1000.21	18.26	
olm5000	0.1	0.1	0.0199	6.007	0.1	0.1	0.26	4.74	
poisson3Db	0.1	0.1	0.33	0.369	0.1	0.1	88.6	2.71	
poli_ large	0.1	0.1	0.02	2.04	0.1	0.1	0.27	3.27	
powersim	0.1	0.1	0.099	1.4	0.1	0.1	0.27	1.93	
$psmigr_{-} 3$	0.1	0.1	0.02	0.0147	0.1	0.1	17.03	2.619	
Raj1	0.1	0.1	4.22	1.245	0.1	0.1	15.01	1.53	
rajat03	0.1	0.1	10^{-15}	1.27	0.1	0.1	0.25	1.37	
rajat15	0.1	0.1	0.139	0.567	0.1	0.1	0.54	0.645	
rajat16	0.1	0.1	5.77	0.831	0.1	0.1	6.67	0.819	
rajat18	0.1	0.1	6.05	1.02	0.1	0.1	6.69	1.06	
rajat20	0.1	0.1	5.05	0.922	0.1	0.1	5.73	0.912	
rajat22	0.1	0.1	0.15	0.91	0.1	0.1	0.569	1.12	
rajat25	0.1	0.1	4.88	0.851	0.1	0.1	5.72	0.825	

Table 20: Properties of the preconditioners.

Method	1	eft-look	ing SAIN	V-Ns	right-looking SAINV-Ns			
	ε_U	$\varepsilon_{Q,W}$	Sec_p	density	ε_U	$\varepsilon_{Q,W}$	Sec_p	density
rajat27	0.1	0.1	0.0799	1.3	0.1	0.1	0.38	2.19
rajat28	0.1	0.1	5.55	0.909	0.1	0.1	6.4	0.916
rajat31	0.1	0.1	5.59	1.33	0.1	0.1	46.84	1.58
rma10	0.1	0.1	5.43	1.5	0.1	0.1	293.07	15.02
scircuit	0.1	0.1	0.21	1.12	0.1	0.1	0.829	1.4
sherman3	0.1	0.1	0.01	1.29	0.1	0.1	0.239	1.36
swang1	0.1	0.1	10^{-15}	0.536	0.1	0.1	0.229	0.537
swang2	0.1	0.1	10^{-15}	0.565	0.1	0.1	0.23	0.567
thermal	0.1	0.1	0.01	0.287	0.1	0.1	0.26	0.262
$tmt_{-}unsym$	0.1	0.1	1.58	1.98	0.1	0.1	3.91	1.98
tomography	0.1	0.1	0.0199	0.722	0.1	0.1	0.239	0.722
torso2	0.1	0.1	0.14	0.607	0.1	0.1	0.579	0.608
torso3	0.1	0.1	0.27	0.164	0.1	0.1	1.35	0.205
trans4	0.1	0.1	66.19	0.914	0.1	0.1	68.86	0.959
trans5	0.1	0.1	52.00	0.855	0.1	0.1	66.93	0.924
$TSOPF_RS_b39_c7$	0.1	0.1	0.08	0.764	0.1	0.1	0.72	2.611
<i>TSOPF_RS_b</i> 39_ <i>c</i> 19	0.1	0.1	0.21	0.76	0.1	0.1	1.61	2.75
<i>TSOPF_RS_b39_c30</i>	0.1	0.1	0.299	0.708	0.1	0.1	2.26	2.64
utm5940	0.1	0.1	0.099	1.993	0.1	0.1	8.17	24.001
venkat01	0.1	0.1	0.51	0.745	0.1	0.1	1.26	3.12
venkat25	0.1	0.1	0.989	1.29	0.1	0.1	728.52	35.81
venkat50	0.1	0.1	1.02	1.32	0.1	0.1	718.58	35.92
viscoplastic2	0.1	0.1	20.35	18.21	0.1	0.1	93.45	40.24
wang3	0.1	0.1	0.08	1.614	0.1	0.1	0.37	1.83
wang4	0.1	0.1	0.0399	0.869	0.1	0.1	118.64	71.12
Zhao1	0.1	0.1	0.079	1.74	0.1	0.1	287.15	164.16

Table 21: Properties of the preconditioners.

10010 11		as mounda mitin in	She preconditioner			
Method	left-lo	oking SAINV-Ns	right-looking SAINV-Ns			
	It	Sec_{tot}	It	Sec _{tot}		
3D_51448_3D	493	4.04	+	+		
af23560	297	2.2	+	+		
airfoil_2d	231	0.449	+	+		
arc130	7	10^{-15}	+	+		
atmosmodd	253	43.97	283	522.28		
atmosmodj	277	48.14	253	47.86		
bcircuit	+	+	+	+		
cage9	19	0.009	17	0.24		
cage10	17	0.029	17	0.27		
cage11	19	0.12	19	0.389		
caae12	19	0.43	19	0.88		
cavitu05	195	0.04	+	+		
cavitu10	329	0.099	+	+		
cavitu11	853	0.24	+	+		
cavitu12	2471	0.689	+	+		
cavitu13	+	+	+	+		
cavity16	519	0.26	' _+	+		
cavitu17	709	0.20		+		
cavitu18	1257	0.51		+		
cavitu19	2407	1.06		+		
cavity20		1.00				
cutity20	 	0.0800		0.280		
	1162	0.0899	150	0.209		
Chabushow?	1105	0.403	109	0.299		
chem master1	1 $\overline{)}$ \overline{)} $\overline{)}$ $\overline{)}$ $\overline{)}$ $\overline{)}$ \overline{)} $\overline{)}$ $\overline{)}$ \overline{)} $\overline{)}$ \overline{)} $\overline{)}$ \overline{)} $\overline{)}$ $\overline{)}$ \overline{)} \overline{)} $\overline{)}$ $\overline{)}$ \overline{)} $\overline{)}$ \overline{)} $\overline{)}$ \overline{)} $\overline{)}$ \overline{)} $\overline{)}$ \overline{)} $\overline{)}$ \overline{)} \overline{)} $\overline{)}$ $\overline{)}$ \overline{)} $\overline{)}$ \overline{)} $\overline{)}$ \overline{)} $\overline{)}$ \overline{)} \overline{)} $\overline{)}$ \overline{)} \overline{)} \overline{)} \overline{)} \overline{)} \overline{)} \overline{)}			1.05		
chem_muster1	151	0.949	151	0.72		
chipcool0	101	0.40	101	0.75		
Cinquit 1	157	0.45	100	0.059		
Circuit_1	15	0.03999	+	+		
Circuit_2		0.01	101	0.299		
		+		+		
<i>ck</i> 104	19	10 10	45	0.26		
comsol	2037	0.56	1779	0.779		
coupled	53	0.159	63	0.43		
crashbasis	35	1.129		+		
<i>cryg</i> 10000	+	+	+	+		
	27	52.94	51	71.65		
	29	54.02		71.74		
	45	55.76	139	73.13		
ecl32	425	4.16	+	+		
epb1	219	0.22	205	0.459		

Table 22: Bicgstab method with right preconditioner

Method	left-looking SAINV-Ns		right-looking SAINV-Ns		
	It	Sec_{tot}	It	Sec_{tot}	
epb2	103	0.259	115	0.559	
epb3	365	3.13	685	5.86	
ex24	+	+	+	+	
ex29	15	10^{-15}	15	0.22	
ex31	+	+	+	+	
ex36	1191	0.309	+	+	
ex37	21	10^{-15}	37	0.249	
ex40	+	+	+	+	
flow meter 5	215	0.15	197	0.379	
$fs_{-} 183_{-} 1$	7	10^{-15}	185	0.210006	
$fs_{-} 183_{-} 6$	7	10^{-15}	535	0.22	
garon1	+	+	+	+	
hvdc2	+	+	+	+	
$ibm_{-} matrix_{-}2$	871	7.4	+	+	
jan 99 jac 040 sc	79	0.35	+	+	
jan 99 jac 100 sc	193	1.98	+	+	
jan 99 jac 120 sc	535	5.37	+	+	
Kaufhold	3	0.02	3	0.23001	
lung2	13	0.21	+	+	
major basis	23	0.72	+	+	
matrix - 9	137	2.96	+	+	
$matrix - new_{-} 3$	149	2.98	+	+	
memplus	45	0.05	21	0.28	
$mult_{-} dcop_{-} 01$	47	2.73	+	+	
$mult_{-} dcop_{-} 02$	51	2.05	+	+	
$mult_{-} dcop_{-} 03$	13	2.09	+	+	
ns3Da	+	+	+	+	
olm5000	1799	0.579	+	+	
poisson 3Db	215	4.04	+	+	
$poli_{-} large$	11	0.0200004	53	0.299	
powersim	159	0.139	337	0.539	
$psmigr_{-} 3$	19	0.05	+	+	
Raj1	+	+	+	+	
rajat03	41	0.01	+	+	
rajat15	623	2.69	955	4.43	
rajat16	+	+	+	+	
rajat18	+	+	+	+	
rajat20	+	+	+	+	
rajat22	+	+	+	+	
rajat25	+	+	+	+	

Table 23: Bicgstab method with right preconditioner

Method	left-lo	oking SAINV-Ns	right-looking SAINV-Ns		
	It	Sec_{tot}	It	Sec_{tot}	
rajat27	+	+	+	+	
rajat28	1311	16.09	+	+	
rajat31	91	47.27	+	+	
rma10	+	+	+	+	
scircuit	+	+	+	+	
sherman3	27	0.0499	173	0.279	
swang1	+	+	17	0.2299	
swang2	+	+	17	0.23	
thermal	17	0.020004	15	0.26	
tmt_{-} $unsym$	+	+	+	+	
tomography	15	0.0299	15	0.25	
torso2	17	0.36	17	0.77	
torso3	23	1.05	+	+	
trans4	15	66.38	19	69.07	
trans5	33	52.35	37	68.28	
$TSOPF_RS_b39_c7$	+	+	+	+	
$TSOPF_RS_b39_c19$	+	+	+	+	
$TSOPF_RS_b39_c30$	+	+	+	+	
utm5940	1111	0.939	+	+	
venkat01	45	1.379	87	2.76	
venkat25	777	19.97	+	+	
venkat50	+	+	+	+	
viscoplastic2	139	24.35	+	+	
wang3	131	0.46	+	+	
wang4	153	0.33	+	+	
Zhao1	37	0.209	+	+	

Table 24: Bicgstab method with right preconditioner

Method	left-l	ooking SAINV-Ns	right-looking SAINV-Ns		
	It	Sec_{tot}	It	Sec_{tot}	
$3D_{-}51448_{-}3D$	364	3.88	+	+	
af23560	375	3.2	+	+	
$airfoil_2d$	+	+	+	+	
arc130	5	10^{-15}	+	+	
atmosmodd	276	94.27	273	97.32	
atmosmodj	374	126.76	370	132.54	
bcircuit	+	+	+	+	
cage9	16	10^{-15}	16	0.229	
cage10	16	0.04	16	0.27	
cage11	17	0.13	17	0.419	
cage12	17	0.489	17	0.909	
cavity05	297	0.05	+	+	
cavity10	+	+	+	+	
cavity11	+	+	+	+	
cavity12	+	+	+	+	
cavity13	+	+	+	+	
cavity16	+	+	+	+	
cavity17	+	+	+	+	
cavity18	+	+	+	+	
cavity19	+	+	+	+	
cavity20	+	+	+	+	
cell1	+	+	+	+	
cell2	88	0.069	61	0.279	
Chebyshev3	+	+	+	+	
chem_ master1	756	4.33	649	3.74	
chipcool0	201	0.77	202	1.13	
chipcool1	209	0.78	254	1.19	
Circuit_ 1	10	0.059	93	0.349	
Circuit_ 2	12	10^{-15}	54	0.28	
Circuit_ 3	+	+	+	+	
ck104	14	10^{-15}	27	0.26	
comsol	+	+	+	+	
coupled	38	0.159	51	0.449	
crashbasis	30	1.299	+	+	
<i>cryg</i> 10000	+	+	+	+	
dc1	19	52.94	27	71.53	
dc2	20	54.05	28	71.84	
dc3	28	55.75	102	73.32	
ecl32	+	+	+	+	
epb1	300	0.579	272	0.69	

Table 25: GMRES(30) method with right preconditioner.

10010 201 0		bo) meenoa wien i	-8-10 PI	contantioner.	
Method	left-looking SAINV-Ns		right-looking SAINV-Ns		
	It	Sec_{tot}	It	Sec_{tot}	
epb2	92	0.369	109	0.709	
epb3	447	5.63	674	8.61	
ex24	+	+	+	+	
ex29	14	10^{-15}	14	0.22	
ex31	+	+	+	+	
ex36	+	+	+	+	
ex37	19	10^{-15}	19	0.239	
<i>ex</i> 40	+	+	+	+	
flowmeter5	653	0.66	651	0.839	
fs_ 183_ 1	6	10^{-15}	12	0.21	
f_{s} 183 6	6	10^{-15}	15	0.21	
		10 +		0.21	
bydc?				+	
ibm matrix 2	252	1 060		T	
iom_mutrit_2	61	4.009	+	+	
jun99juc040sc	146	0.309	+	+	
<i>jan99jac</i> 100 <i>sc</i>	140	1.60	+	+	
Jan99Jac120sc	180	2.72	+	+	
Kaufhold	2	0.0100002	2	0.23001	
lung2		0.2200012	+	+	
majorbasis	20	0.79	+	+	
matrix - 9	168	4.709	+	+	
$matrix - new_{-} 3$	268	7.38	+	+	
memplus	40	0.09	18	0.28	
$mult_dcop_01$	26	2.719	+	+	
$mult_dcop_02$	19	2.05	+	+	
$mult_dcop_03$	10	2.09	+	+	
ns3Da	+	+	+	+	
olm5000	1483	0.69	+	+	
poisson3Db	256	5.75	+	+	
poli_ large	10	0.04	25	0.309	
powersim	138	0.229	336	0.769	
$psmigr_{-} 3$	17	0.05	+	+	
Raj1	+	+	+	+	
rajat03	28	0.02	57	0.289	
rajat15	1090	6.72	+	+	
rajat16	+	+	+	+	
rajat18	+	+	+	+	
rajat20	+	+	+	+	
rajat22	+	+	+	+	
rajat25	+	+	+	+	
	1 1		II		

Table 26: GMRES(30) method with right preconditioner.

Method	left-looking SAINV-Ns		right-looking SAINV-Ns		
	It	Sec_{tot}	It	Sec_{tot}	
rajat27	+	+	+	+	
rajat28	+	+	+	+	
rajat31	90	105.04	+	+	
rma10	+	+	+	+	
scircuit	+	+	+	+	
sherman3	713	0.279	526	0.429	
swang1	15	10^{-15}	15	0.239	
swang2	16	10^{-15}	15	0.230001	
thermal	14	0.02	14	0.26	
tmt_{-} $unsym$	+	+	+	+	
tomography	13	0.0199	13	0.2399	
torso2	15	0.4	15	0.789	
torso3	19	1.2	+	+	
trans4	12	66.39	14	69.09	
trans 5	24	52.39	24	67.3	
$TSOPF_RS_b39_c7$	+	+	+	+	
$TSOPF_RS_b39_c19$	+	+	+	+	
$TSOPF_RS_b39_c30$	+	+	+	+	
utm5940	+	+	+	+	
venkat01	42	1.419	78	2.82	
venkat25	856	24.54	+	+	
venkat50	1586	44.94	+	+	
viscoplastic2	105	23.6	+	+	
wang3	155	0.79	+	+	
wang4	181	0.679	+	+	
Zhao1	37	0.279	+	+	

Table 27: GMRES(30) method with right preconditioner.

1abic 20.	TLAN	it mound wrom me	5m pro	conditioner.	
Method	left-looking SAINV-Ns		right-looking SAINV-Ns		
	It	Sec_{tot}	It	Sec_{tot}	
$3D_{-}51448_{-}3D$	347	2.91	+	+	
af23560	317	2.4	+	+	
$airfoil_{-}2d$	235	0.529	+	+	
arc130	7	10^{-15}	+	+	
atmosmodd	293	52.7	263	50.59	
atmosmodj	289	52.3	257	49.83	
bcircuit	+	+	+	+	
cage9	19	0.00999	17	0.2200012	
cage10	19	0.0100097	19	0.259	
cage11	19	0.11	19	0.399	
caqe12	19	0.449	19	0.869	
cavity05	193	0.03	+	+	
cavity10	357	0.0099	+	+	
cavity11	1179	0.32	+	+	
cavity12	+	+	+	+	
cavity13	+	+	+	+	
cavity16	527	0.25	+	+	
cavity17	817	0.37	+	+	
cavity18	1915	0.86	+	+	
cavity19	+	+	+	+	
cavity20	+	+	+	+	
cell1	+	+	167	0.309	
cell2	+	+	221	0.319	
Chebyshev3	+	+	+	+	
$chem_{-}master1$	333	1.349	249	1.22	
chipcool0	175	0.499	183	0.83	
chipcool1	151	0.43	155	0.749	
$Circuit_{-}1$	13	0.059	845	0.46	
Circuit_ 2	17	0.01	+	+	
Circuit_ 3	+	+	+	+	
ck104	19	10^{-15}	43	0.26	
comsol	725	0.22	477	0.4	
coupled	47	0.149	65	0.419	
crashbasis	35	1.169	+	+	
<i>cryg</i> 10000	+	+	+	+	
dc1	23	52.91	45	71.58	
dc2	27	54.04	39	71.79	
dc3	43	55.72	95	72.77	
ecl32	457	4.58	+	+	
epb1	265	0.279	241	0.5	

Table 28: TFQMR method with right preconditioner.

Method	left-looking SAINV-Ns		right-looking SAINV-Ns		
	It	Sec_{tot}	It	Sec_{tot}	
epb2	95	0.259	113	0.589	
epb3	381	3.46	789	6.96	
ex24	+	+	+	+	
ex29	17	10^{-15}	17	0.229	
ex31	+	+	+	+	
ex36	1193	0.319	+	+	
ex37	21	0.00999	21	0.25	
ex40	+	+	+	+	
flow meter 5	297	0.21	217	0.339	
fs_ 183_ 1	7	10^{-15}	27	0.2200012	
$fs_{-} 183_{-} 6$	7	10^{-15}	71	0.21000067	
garon1	1589	0.54	+	+	
hvdc2	+	+	+	+	
$ibm_{-} matrix_{-}2$	369	3.4	+	+	
jan 99 jac 040 sc	67	0.329	+	+	
jan 99 jac 100 sc	125	1.5	+	+	
jan 99 jac 120 sc	165	2.28	+	+	
Kaufhold	3	0.0100002	3	0.23001	
lung2	13	0.2	+	+	
major basis	23	0.74	+	+	
matrix - 9	163	3.51	+	+	
$matrix - new_{-} 3$	205	4.24	+	+	
memplus	45	0.0399	21	0.28	
$mult_{-} dcop_{-} 01$	43	2.739	+	+	
$mult_{-} dcop_{-} 02$	47	2.05	+	+	
$mult_{-} dcop_{-} 03$	13	2.109	+	+	
ns3Da	+	+	+	+	
olm5000	235	0.09	+	+	
poisson 3Db	249	4.76	+	+	
$poli_{-} large$	11	0.03	59	0.309	
powersim	139	0.119	315	0.519	
$psmigr_{-} 3$	19	0.05	+	+	
Raj1	+	+	+	+	
rajat03	41	0.01	441	0.369	
rajat15	601	2.76	+	+	
rajat16	+	+	+	+	
rajat18	+	+	+	+	
rajat20	+	+	+	+	
rajat22	+	+	+	+	
rajat25	2415	25.22	+	+	

Table 29: TFQMR method with right preconditioner.

Method	left-l	ooking SAINV-Ns	right-looking SAINV-Ns		
	It	Sec_{tot}	It	Sec_{tot}	
rajat27	715	0.97	+	+	
rajat28	+	+	+	+	
rajat31	123	65.5	+	+	
rma10	+	+	+	+	
scircuit	+	+	+	+	
sherman3	217	0.059	211	0.279	
swang1	17	10^{-15}	17	0.2299	
swang2	19	0.00999	17	0.2300014	
thermal	19	0.0100021	17	0.269	
tmt_{-} $unsym$	+	+	+	+	
tomography	17	0.01999	17	0.2399	
torso2	19	0.38	21	0.819	
torso3	23	1.11	+	+	
trans4	17	66.4	19	69.06	
trans 5	43	52.46	49	67.44	
$TSOPF_{-}RS_{-}b39_{-}c7$	+	+	+	+	
$TSOPF_RS_b39_c19$	+	+	+	+	
$TSOPF_RS_b39_c30$	+	+	+	+	
utm5940	967	0.84	+	+	
venkat01	47	1.4	109	3.12	
venkat25	821	21.45	+	+	
venkat50	979	25.61	+	+	
viscoplastic2	105	23.42	+	+	
wang3	135	0.51	+	+	
wang4	155	0.359	+	+	
Zhao1	39	0.22	+	+	

Table 30: TFQMR method with right preconditioner.

5 Conclusion

In this paper, modified left and right-looking versions of the SAINV-Ns preconditioner were presented. The inverse-based dropping technique was applied to construct both modified left and right-looking versions. Numerical experiments on 106 nonsymmetric matrices indicate that the preconditioning time of the modified left-looking version is less than the preconditioning time of the modified right-looking version. The modified right-looking version tends to be denser than the modified left-looking version. But the modified left-looking version is more effective to be used as the right preconditioner to reduce the number of iterations of the Krylov subspace methods.

Acknowledgments

I would like to thank B.T. Haghighi.

References

- M. Benzi, M. Tůma. A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM J. Sci. Comput., 1998, 19(3): 968 - 994.
- [2] M. Benzi, M. Tůma. A robust incomplete factorization preconditioner for positive definite matrices. Numer. Linear Algebra Appl., 2003, 10: 385 - 400, doi: 10.1002/nla.320.
- [3] M. Benzi, J.K. Cullum, M. Tůma. Robust approximate inverse preconditioning for the conjugate gradient method. SIAM J. Sci. Comput., 2000, 22: 1318 - 1332.
- [4] M. Bollhöfer, Y. Saad. On the relations between ILUs and factored approximate inverses. SIAM J. Matrix Anal. Appl., 2002, 24(1): 219 - 237.
- [5] M. Bollhöfer. A robust and efficient ILU that incorporates the growth of the inverse triangular factors. SIAM J. Sci. Comput., 2003, 25(1): 86 - 103.
- [6] T. Davis. University of Florida Sparse Matrix Collection. 2009. http://www.cise.ufl.edu/research/sparse/matrices/. Accessed 17 December 2009.
- [7] G.H. Golub, C.F. Van Loan. Matrix Computation. 3rd Edition. The John Hopkins University Press, Baltimore, MD, 1996.
- [8] G. Karypis, V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput., 1998, 20(1): 359 - 392.
- [9] N. Li, Y. Saad, E. Chow. Crout version of ILU for general sparse matrices. SIAM J. Sci. Comput., 2003, 25(2): 716 - 728.
- [10] A. Rafiei, F. Toutounian. New breakdown-free variant of AINV method for nonsymmetric positive definite matrices. J. Comput. Appl. Math., 2008, 219(1): 72 80, doi: 10.1016/j.cam.2007.07.003.
- [11] A. Rafiei, M. Bollhöfer. Extension of inverse-based dropping techniques for ILU preconditioners. Submitted 2010.
- [12] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS publishing, Boston, 1996.