Isc The 9" Seminar on Linear Algebra and its Applications
==k July 5-6, 2017, University of Tabriz, Tabriz, Iran

LEFT-LOOKING APPROXIMATE INVERSE PRECONDITIONER
IN BLOCK FORM

AMIN RAFIEI AND SAMANEH HOSSEINI SANI

ABSTRACT. In this paper we present a block version of left-looking AINV
preconditioner. In the numerical tests, we compare the quality of the plain
and block versions of this preconditioner.

Keywords: AINV preconditioner; GMRES method.

1. INTRODUCTION

Consider the linear system
Arx =1

where A € R™*™ is real, nonsymmetric and invertible matrix and z,b € R**!. The
left-looking A-biconjugation algorithm can be used to factorize A~! in the following
form

Al =zZD'wT,

In this factorization Z and W are unit upper triangular matrices and D is a
diagonal matrix [1]. If we apply dropping in this algorithm, then the left-looking
AINV will be obtained. In [2], we have presented a block format of left-looking
A-biconjugation algorithm. In this case, Z and W factors are agin unit upper
triangular while D is a block diagonal matrix. The diagonal blocks of D are of
order 1 x 1 or 2 x 2. Applying the dropping strategy in this block algorithm will
give us a block version of left-looking AINV preconditioner. In this paper, we will
compare the quality of the block and plain left-looking ATNV preconditioners at
reducing the number of iterations of the GMRES [1] Krylov subspace method.

2. ALGORITHMS OF PLAIN AND BLOCK LEFT-LOOKING AINV PRECONDITIONERS

In this section, we have presented three algorithms. Algorithm 1 and 2 are
used to compute the block version of left-looking AINV preconditioner. We call
Algorithm 2 inside Algorithm 1 to construct a column of matrices Z and W.

2010 Mathematics Subject Classification. 65F10, 65F08.
Speaker: Samaneh Hosseini Sani.

51

52

Algorithm 1 (A block format of left-looking AINV preconditioner)

Input: A € R"*™ a nonsymmeetric matrix, T, 72 € (0, 1) are the drop tolerance parameters for W and Z.
Output: Al ZD71WT, Z and W are unit upper triangular and D is a block diagonal matrix.

. logic_z = logicw = true
. status(i) =0, 1 <i<n
0 0 0 , 0 0 0
2 10 0O = p W = O] = 1 D =0 € BT

1=1
while i < n do
if logic_z then
call column — const(Z, 75, A, D, i, status)
else
logic_z = true
10. end if
11. call column — const(Z, 7., A, D,i+ 1, status)
12. SEZ - ezﬂAzét b
13. for j =i+ 1 ton do
14. SETD = Tasfmh s = T
15. end for
16. if logic-w then

CRNDOUR W o=

17. column-const(W, 7,, AT, DT i, status)
18. else
19. logic-w = true
20. end if
21. call column — const(W, Ty, AT, DT, i+ 1, status)
i—1 i—1 . .
22, sUTY = TN T ae;, G2t
Gi—=1) _ , (i—=1)\T o
23. 8407 = (wil)T Aey, ji>i+2

(i—1 (i—1
24. vy = maﬂ?{lvil_l)‘ i1 \552), ‘(171_1)| it |5;: |
g <{

ij i

. s T (s

25 wp =il Gli=1) S(q:—'i") gli—1) | lloo
i+1,1 i+1,i+1 i+1,5
(i-1) (i-1 17t
26 w2 =" (s("'*l) s("*l)) s Siiti Il
. Vi j=i+2 ij i+1,5 S(zjll) S(m—ll)+ oo
i Ji i+1,i+1
27. w; = rnaz{wll,w?}
28. if v; < w; then
29. Dy = 47
)) Tai-D))

30. 2521 = 251711) — (LDiyl))zilil). For all I < ¢ apply dropping rule to Zl(,li>+1 if its absolute value

is less than 7

(i—1)yT
i P (w)t Ae; i .
31. wgzl = wl(:_ll) — (%)wiz D, For all | < ¢ apply dropping rule to wl(l,ZJrl if its absolute
ii ,

value is less than 74,
32. logic.z = false, logicow = false
33. status(i) =1
34. i=i+1
35. else
36. Diiit1,ivit1 = [(

(i) _ _(i—1) ’z

37. Zif1 = Fip1 o Wify =
38. status(i) = 2
39 i=i+2

41. end while
42. if status(n — 1) = 0 then

43. call column — const(Z, 7, A, D, n, status)

44. call column — const(W, 7, AT, DT, n, status)
-1

45. Dy = e’};Azf,,,n)

46. end if

47. if status(n — 1) = 1 then

48. Dp,n = eZ;Azsln_l)

49. end if

50. Return Z = [zﬁo), zgl), s Z;n—l)], W = [wgo), wél), . wﬁ:bil)] and D

Algorithm 3 gives the plain left-looking AINV preconditioner. This algorithm
was first introduced by Benzi and Tuma in reference [1].

LEFT-LOOKING APPROXIMATE INVERSE PRECONDITIONER IN BLOCK FORM 53

Algorithm 2 (Column construction of a matrix)

Column. Const(Z,1,,A, D, 1, status)

Input: Z = [zio), zél), . ,z,ﬁ":lm, 250), . ,szo)] € R"™ "™ 1, € (0,1) is the drop tolerance for Z,
A € R™*™ a nonsymmetric matrix, D € R"*™ a block diagonal matrix, i is an integer,
status is an integer array

Output: updated Z

1. j=1

2. while j <i— 1 do

3. k = j+ status(j) — 1

4. if status(j) =1 then

5. zgk) = zlf]_l) — z;J_l) X TIH x Aj. X zgj_l)

6. j=j4+1 a

7. else if status(j) = 2 then

8. 2 =207 YUY D 1 DG g G+ DT X A x 20T
9. j=j+2

10. end if

11. Consider zz(k) = (zl(f)). For all I, apply dropping rule to zl(lm if its absolute value is less than 7,
12. end while

13. Return Z

Algorithm 3 (Left-looking AINV preconditioner)

Input: A € R"*™ a nonsymmetric matrix, 7, 7> € (0,1) the drop tolerances for W and Z.
Output: A~ ~ ZD w7,

1. D=0¢€R"*"

2. for i =1 ton do

3. 11in = e;, zEO) =e;
4. for j=1toi—1do
. . (G=1)\T . . . T A, (G—1) .
@) _, G=1) _ Qo)T Aey o (G=1) () _ (G-1) _ ej Az (G-1)
5. wy = w; —(T’)wj 20 =2 —(JT 2
6. ()

for all 1 < j apply a dropping rule to w;;’ and to zl(ij> if their absolute values are less
than T and 7.

7. end for)

8. D“' = 6311427?171)

9. end for
10. Return Z = [z%o),zél), e ,z;n_l)], W = [wgo),wél), cee ,wﬁ,"‘l)] and D = diag(Dj;)i1<i<n-

3. NUMERICAL TESTS

In this section, we have reported the results of numerical experiments.We have
implemented 3 algorithms in Matlab. We have selected 4 matrices from [3]. Then,
we constructed the artificial linear systems A[l,---,1]7 = b. These systems have
been solved by the GM RES(15) Krylov subspace method. The command GM RES
in Matlab provides us this method. The matrix information and the convergence
results of the GM RES(15) can be found in Table 1. In this table, n and nnz are
the dimension and number of nonzero entries of the matrix. iter(1) and iter(2) are
the number of external and internal iterations of GM RES(15), respectively. Time
is the iteration time which is in seconds.

TABLE 1. matrix properties and results of GM RES(15)

[Matrix properties Il GMRES(15) |
[mame [n [nnz [[iter(1) [iter(2) [Time |
sherman4 | 1104 | 3786 37 12 0.305
orsirr-2 886 5970 397 9 1.629
shermanl | 1000 | 2375 132 15 0.559
cddel 961 4681 9 2 0.035

54

In Table 2, we have set 7, = 7, = 0.1 and computed both the plain and
the block left-looking AINV preconditioners. The notations LLAINV(0.1) and
BLLAINV(0.1) refer to these two cases. Then, these two preconditioners have
been used as the right preconditioner for linear systems. After that, the precondi-
tioned systems have been solved by the GM RES(15) method. The resuls of these
tests can be found in Table 2. In this table, ptime is the preconditioning time which
is in seconds and density is defined as

nnz(Z) + nnz(W)

nnz(A) ’
where nnz(Z), nnz(W) and nnz(A) are the number of nonzero entries of matrices
Z, W and A, respectively. In this table, iter(1) and iter(2) have the same definition

as in Table 1 and T'time is the summation of preconditioning time and the iteration
time of the GM RES(15) method.

density =

TABLE 2. properties of the preconditioners and results of GM RES(15) to

solve the preconditioned systems

| I LLAINV(0.1)+GMRES(15) T BLLAINV(0.1)+ GMRES(15) |

[matrix][ptime [density [iter(1) [iter(2) [Ttime [[ptime [density [iter(1) [iter(2) [Ttime |
sherman4 40.84 1.331 7 13 41.0025 5641.11 4.079 7 3 5641.44
orsirr-2 26.05 0.919 4 10 26.1109 3321.73 3.458 4 9 3321.79
shermanl 29.61 1.350 1 6 29.621 3589.79 1.551 1 6 3589.8
cddel 34.41 1.558 20 14 34.7793 || 4550.61 | 15.341 9 1 4550.76

The results in Table 2 indicate that for matrices sherman4, orsirr-2 and cddel,
the block left-looking AINV preconditioner is more effective than the plain left-
looking AINV at reducing the number of iterations of GM RFES(15) method. For
matrix shermanl, both preconditioners make the GM RES(15) method convergent
in the same number of iterations. Comparing the preconditioning time of both
preconditioners show that the block left-looking AINV needs more time to be
constructed. By analyzing the number of iterations in Tables 1 and 2 one may
come to conclusion that both preconditioners are effective tools at reducing the
number of iterations of GM RES(15) method.

REFERENCES

[1] M.Benzi and M.Tuma, A sparse approximate inverse preconditioner for nonsymmetric linear
systems, SIAM J.Sci. Comput. 19(3), (1988) 968-994

[2] A.Rafiei, M.Bollhofer and T.Huckle, A block factorization format for the inverse of a nonsym-
metric matrix , 47t Annual Tranian Mathematics conference (ATMC47), Kharazmi University,
(2016).

[3] T.Davis, The SuiteSparse Matriz Collection, http://www.cise.ufl.edu/research/sparse/matrices.

[4] Tterative methods for sparse linear systems, SIAM, Philadelphia. 2nd edition (2003).

DEPARTMENT OF APPLIED MATHEMATICS, HAKIM SABZEVARI UNIVERSITY, TRAN
E-mail address: rafiei.am@gmail.com, a.rafiei@hsu.ac.ir

DEPARTMENT OF APPLIED MATHEMATICS, HAKIM SABZEVARI UNIVERSITY, IRAN
E-mail address: samanehhoseini@yahoo.com

