Right-looking approximate

Amin Rafiei \& Leila Kakhki Beydokhti*

Department of applied mathematics, Hakim Sabzevari University, Sabzevar, Iran
rafiei.am@gmail.com,l.kakhki2971@gmail.com
Article Code: A-10-550-3

Abstrac

In this paper, we present a block format of right-looking $A I N V$ preconditioner. In the numerical tests, we compare the results of the plain and the block version of this preconditioner.

1 Introduction

The right-looking approximate inverse preconditioner M for the nonsymmetric linear system of equations $A x=b$,
is in the following form

$$
\begin{equation*}
A^{-1} \approx M=Z D^{-1} W^{T} \tag{2}
\end{equation*}
$$

where Z and W are unit upper triangular matrices and D is a diagonal matrix. This preconditioner was first studied in [1]. In this reference, the authors used the notation $A I N V$ for this preconditioner. For a symmetric matrix A, a block format of $A I N V$ preconditioner has been presented in [2]. In this case, the $A I N V$ preconditioner has only two Z and D factors. Z is a block unit upper triangular and D is a block diagonal matrix.
In this paper, we introduce a new block right-looking $A I N V$ preconditioner. In this block format, Z and W are again unit upper triangular while D is a block diagonal matrix. The diagonal blocks of D are of order 1×1 or 2×2.

2 Algorithms of plain and block right-looking $A I N V$ preconditioner

Algorithm 1 computes the block right-looking $A I N V$ preconditioner. In each step i of this algorithm we check in lines 16 and 23 to know whether we have a 1×1 pivot entry or a 2×2 block pivot. If at step i of Algorithm 1 the pivot is selected to be a 1×1 entry, then $\operatorname{status}(i)$ is set to be 1 and we call Algorithm 2 in line 19. Inside Algorithm 2 and based on the value of status (i), only the lines 2-5 are run. In these lines the column i of matrix Z will update the columns $(i+1)$ st to n of this matrix. Calling Algorithm 2 in line 20 of Algorithm 1 will update the columns $(i+1)$ st to n of matrix W. If at step i of Algorithm 1 the pivot is selected to be a 2×2 block, then $\operatorname{status}(i)$ is set equal to 2 in line 27 and we should call Algorithm 2 two more times in lines 28 and 29. In this case, the columns i and $i+1$ of matrix $Z(W)$ will update the columns $i+2$ to n of this matrix.
Algorithm 1 (Block right-looking AINV preconditioner)

$\sqrt{2}$

Algorithm 2 (Column construction of a matrix)

Algorithm 3 gives the plain right-looking $A I N V$ preconditioner. At the end of this algorithm, the approximate inverse factorization (2) will be computed. At step i of this algorithm and in lines 4-8, the i th column of matrix $Z(W)$ will update the columns $(i+1)$ st to n of this matrix. In line 9 of this algorithm, the pivot element $D_{i i}$ is introduced.

3 Numerical tests

In this section, we have downloaded 4 nonsymmetric matrices from [3]. Then, we have generated artificial linear systems (1) where $b=A e$ and $e=[1, \cdots, 1]^{T}$. After that, we have used the $G M R E S(15)$ Krylov subspace method [4] to compute an approximate solution for these systems. The initial solution for this method is selected to be the zero vector and the stopping criterion is satisfied when the relative residual is less than 10^{-8}. In Table $1, n$ and $n n z$ are the dimension and the number of nonzero entries of the matrix. Iter (1) and $\operatorname{Iter}(2)$ are the inner and outer iterations of the $G M R E S(15)$ method. We have implemented Algorithms 1, 2 and 3 in MATLAB. We have also applied the command gmres in this software.

Table 1: matrix properties and results of $G M R E S(15)$

Marii			(15)		
name	n	nnz	iter(1)	iter(2)	
r-2	886	5970	449		
	90	4380	13		
	680		1000		

For all the four artificial linear systems we have set $\tau_{w}=\tau_{z}=0.1$ and computed the plain and the block right-looking $A I N V$ preconditioner. Then, we have used these two preconditioners as the right preconditioner and have solved the right preconditioners systems by the $G M R E S(15)$ method. In Table 2, the notation $\operatorname{RLAINV}(0.1)+G M \operatorname{RES}(15)$ is used for the case when the preconditioner is the plain right-looking AINV and it is mixed by the $G M R E S(15)$. In this table, the notation BRLAINV $(0.1)+G M R E S(15)$ shows that the preconditioner is the block right-looking $A I N V$ and $G M R E S(15)$ has been used to solve the right preconditioned systems. In Table 2, ptime is the preconditioning time which is in seconds and density is defined as

$$
\text { density }=\frac{n n z(Z)+n n z(W)}{n n z(A)}
$$

where $n n z(Z), n n z(W)$ and $n n z(A)$ are the number of nonzero entries of matrices Z, W and A, respectively. In this table, Ttime is the total time which is the preconditioning time plus the iteration time of GMRES(15). Iter (1) and Iter (2) have the same definition as in Table 1. The results of Table 2 indicate that $B R L A I N V(0.1)+G M R E S(15)$ is a better solver than RLAINV(0.1)+GMRES(15) since it gives a less number of iterations.

```
Table 2: properties of the preconditioners and results of GMRES(15) to solve the right preconditioned systems
```

	RLAINV(0.1)+GMRES(15)									
marrix	ptime	density	iter(1)	ier(2)	Ttime	ptime	density			
orsitr-2	17.746	10.1	114	15	34.6323	69.7356	1.1028			
pde900	18.7	2.43	3	15		. 0779	2.1694		10	
fs-68	8.6196	1.8672	1		8.8	31.6749	1.24			
pres-3	4.45718	24.5046	714	15						

References

[1] M. Benzi and M. Tuma, A sparse approximate inverse preconditioner for nonsymmetric linear systems, SIAM J. Sci. comput. 19(3), (1998) 968-994.
[2] M. Benzi, R. Kouhia and M. Tuma, Stabilized and block approximate inverse preconditioners for problems in solid and structural mechanics, Computer Meth. Appl. Mech. Eng., 190, 6533-6554 (2001)
[3] T. Davis, The SuiteSparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/matrices.
[4] Y. Saad, Iterative methods for sparse linear systems, SIAM, Philadelphia. 2nd edition (2003).

Right－looking approximate

$$
\begin{aligned}
& \text { نشانى دبيرخانه: }
\end{aligned}
$$

gめIVA－r＾غ9

