
Right-looking approximate
Amin Rafiei & Leila Kakhki Beydokhti∗
Department of applied mathematics, Hakim Sabzevari University, Sabzevar, Iran
rafiei.am@gmail.com,l.kakhki2971@gmail.com
�
�

�

Article Code: A-10-550-3

Abstract
In this paper, we present a block format of right-looking AINV preconditioner. In the numerical

tests, we compare the results of the plain and the block version of this preconditioner.

1 Introduction
The right-looking approximate inverse preconditioner M for the nonsymmetric linear system of equations

Ax = b, (1)

is in the following form

A−1 ≈M = ZD−1WT , (2)

where Z and W are unit upper triangular matrices and D is a diagonal matrix. This preconditioner was first
studied in [1]. In this reference, the authors used the notation AINV for this preconditioner. For a symmet-
ric matrix A, a block format of AINV preconditioner has been presented in [2]. In this case, the AINV
preconditioner has only two Z and D factors. Z is a block unit upper triangular and D is a block diagonal
matrix.

In this paper, we introduce a new block right-looking AINV preconditioner. In this block format, Z and
W are again unit upper triangular while D is a block diagonal matrix. The diagonal blocks of D are of order
1× 1 or 2× 2.

2 Algorithms of plain and block right-looking AINV preconditioner
Algorithm 1 computes the block right-looking AINV preconditioner. In each step i of this algorithm we
check in lines 16 and 23 to know whether we have a 1 × 1 pivot entry or a 2 × 2 block pivot. If at step i of
Algorithm 1 the pivot is selected to be a 1 × 1 entry, then status(i) is set to be 1 and we call Algorithm 2 in
line 19. Inside Algorithm 2 and based on the value of status(i), only the lines 2-5 are run. In these lines the
column i of matrix Z will update the columns (i + 1)st to n of this matrix. Calling Algorithm 2 in line 20 of
Algorithm 1 will update the columns (i+1)st to n of matrix W . If at step i of Algorithm 1 the pivot is selected
to be a 2× 2 block, then status(i) is set equal to 2 in line 27 and we should call Algorithm 2 two more times
in lines 28 and 29. In this case, the columns i and i+ 1 of matrix Z (W) will update the columns i+ 2 to n of
this matrix.
Algorithm 1 (Block right-looking AINV preconditioner)
Input: A ∈ Rn×n a nonsymmetric matrix, τw, τz ∈ (0, 1) are the drop tolerance parameters for W and Z .
Output: A−1 ≈ ZD−1W T where Z and W are unit upper triangular and D is a block diagonal matrix .
1. status(i) = 0, 1 ≤ i ≤ n

2. i = 1
3. while i < n do
4. for j = i to n do
5. S

(i−1)
ij = (w

(i−1)
i)TAz

(i−1)
j

6. S
(i−1)
i+1,j = (w

(i−1)
i+1)TAz

(i−1)
j

7. end for
8. for j = i+ 2 to n do
9. S

(i−1)
ji = (w

(i−1)
j)TAz

(i−1)
i

10. S
(i−1)
j,i+1 = (w

(i−1)
j)TAz

(i−1)
i+1

11. end for
12. vi = max{ 1

|S(i−1)
ii |

∑n
j=i+1 |S

(i−1)
ij |, 1

|S(i−1)
ii |

∑n
j=i+1 |S

(i−1)
ij |}

13. w1
i =

∑n
j=i+2 ||

[
S
(i−1)
ii S

(i−1)
i,i+1

S
(i−1)
i+1,i S

(i−1)
i+1,i+1

]−1(
S
(i−1)
ij

S
(i−1)
i+1,j

)
||∞

14. w2
i =

∑n
j=i+2 ||

(
S
(i−1)
ji S

(i−1)
j,i+1

)[S(i−1)
ii S

(i−1)
i,i+1

S
(i−1)
i+1,i S

(i−1)
i+1,i+1

]−1
||∞

15. wi = max{w1
i , w

2
i }

16. if vi < wi then
17. Dii = S

(i−1)
ii

18. status(i) = 1

19. Column Const (Z , τz , A , D , i , status)
20. Column Const (W , τw , AT , DT , i , status)
21. i = i+ 1
22. end if
23. if vi ≥ wi then

24. Di:i+1,i:i+1 =

[
S
(i−1)
ii S

(i−1)
i,i+1

S
(i−1)
i+1,i S

(i−1)
i+1,i+1

]
25. z

(i)
i+1 = z

(i−1)
i+1

26. w
(i)
i+1 = w

(i−1)
i+1

27. status(i) = 2

28. Column Const (Z , τz , A , D , i , status)
29. Column Const (W ,τw , AT , DT , i , status)
30. i = i+ 2
31. end if
32. end while
33. if status(n− 1) = 0 || status(n− 1) = 1 then
34. Dnn = (w

(n−1)
n)TAz

(n−1)
n

35. end if
36. Return Z = [z

(0)
1 , z

(1)
2 , · · · , z(n−1)n], W = [w

(0)
1 , w

(1)
2 , · · · , w(n−1)

n] and D

Algorithm 2 (Column construction of a matrix)
Column Const(Z, τz, A,D, i, status)

1. if status(i) = 1 then
2. for j = i+ 1 to n do
3. z

(i)
j = z

(i−1)
j − z(i−1)i

1
Dii
Ai,:z

(i−1)
j

4. suppose that z(i)j = (z
(i)
lj). For all l ≤ i, if |z(i)lj | < τz, then z(i)lj = 0

5. end for
6. end if
7. if status(i) = 2 then
8. for j = i+ 2 to n do
9. k = i+ status(i)− 1

10. z
(k)
j = z

(i−1)
j − [z

(i−1)
i z

(i)
i+1]D

−1
i:i+1,i:i+1Ai:i+1z

(i−1)
j

11. suppose that z(i)j = (z
(i)
lj). For all l ≤ i, if |z(i)lj | < τz, then z(i)lj = 0

12. end for
13. end if

Algorithm 3 gives the plain right-looking AINV preconditioner. At the end of this algorithm, the approx-
imate inverse factorization (2) will be computed. At step i of this algorithm and in lines 4-8, the ith column
of matrix Z (W) will update the columns (i + 1)st to n of this matrix. In line 9 of this algorithm, the pivot
element Dii is introduced.

Algorithm 3 (Right-looking AINV preconditioner)
Input: A ∈ Rn×n a nonsymmetric matrix, τw, τz ∈ (0, 1) are the drop tolerance parameters for W and Z .
Output: A−1 ≈ ZD−1W T

1. w(0)
i = ei, z

(0)
i = ei, 1 ≤ i ≤ n.

2. for i = 1 to n do
3. p

(i−1)
i = (w

(i−1)
i)TAz

(i−1)
i , q

(i−1)
i = (w

(i−1)
i)TAz

(i−1)
i .

4. for j = i+ 1 to n do

5. p
(i−1)
j =

(w
(i−1)
j)TAz

(i−1)
i

p
(i−1)
i

, q
(i−1)
j =

(w
(i−1)
i)TAz

(i−1)
j

q
(i−1)
i

.

6. w
(i)
j = w

(i−1)
j − p(i−1)j w

(i−1)
i , z

(i)
j = z

(i−1)
j − q(i−1)j z

(i−1)
i .

7. for all , l ≤ i , drop entries z(i)lj , w
(i)
lj if their absolute values are less than τzandτw, respectively.

8. end for
9. Dii = p

(i−1)
i .

10. end for
11. Return Z = [z

(0)
1 , z

(1)
2 , · · · , z(n−1)n], W = [w

(0)
1 , w

(1)
2 , · · · , w(n−1)

n] and D = diag(Dii)1≤i≤n.

3 Numerical tests

In this section, we have downloaded 4 nonsymmetric matrices from [3]. Then, we have generated artificial
linear systems (1) where b = Ae and e = [1, · · · , 1]T . After that, we have used the GMRES(15) Krylov sub-
space method [4] to compute an approximate solution for these systems. The initial solution for this method
is selected to be the zero vector and the stopping criterion is satisfied when the relative residual is less than
10−8. In Table 1, n and nnz are the dimension and the number of nonzero entries of the matrix. Iter(1) and
Iter(2) are the inner and outer iterations of the GMRES(15) method. We have implemented Algorithms 1, 2
and 3 in MATLAB. We have also applied the command gmres in this software.

Table 1: matrix properties and results of GMRES(15)

Matrix properties GMRES(15)
name n nnz iter(1) iter(2) Time

orsirr-2 886 5970 449 2 2.0898
pde900 900 4380 13 1 0.1456
fs-680-3 680 2471 1000 15 4.0480
pores-3 532 3474 1000 15 3.8389

For all the four artificial linear systems we have set τw = τz = 0.1 and computed the plain and the block
right-looking AINV preconditioner. Then, we have used these two preconditioners as the right precondi-
tioner and have solved the right preconditioners systems by theGMRES(15) method. In Table 2, the notation
RLAINV (0.1)+GMRES(15) is used for the case when the preconditioner is the plain right-looking AINV
and it is mixed by the GMRES(15). In this table, the notation BRLAINV (0.1) +GMRES(15) shows that
the preconditioner is the block right-looking AINV and GMRES(15) has been used to solve the right pre-
conditioned systems. In Table 2, ptime is the preconditioning time which is in seconds and density is defined
as

density =
nnz(Z) + nnz(W)

nnz(A)
,

where nnz(Z), nnz(W) and nnz(A) are the number of nonzero entries of matrices Z, W and A, respec-
tively. In this table, Ttime is the total time which is the preconditioning time plus the iteration time of
GMRES(15). Iter(1) and Iter(2) have the same definition as in Table 1. The results of Table 2 indicate that
BRLAINV (0.1) +GMRES(15) is a better solver than RLAINV (0.1) +GMRES(15) since it gives a less
number of iterations.

Table 2: properties of the preconditioners and results of GMRES(15) to solve the right preconditioned systems

RLAINV(0.1)+GMRES(15) BRLAINV(0.1)+GMRES(15)
matrix ptime density iter(1) iter(2) Ttime ptime density iter(1) iter(2) Ttime
orsirr-2 17.7469 10.1365 114 15 34.6323 69.7356 1.1028 4 8 70.2005
pde900 18.7464 2.4301 3 15 18.8261 68.0779 2.1694 3 10 68.5125
fs-680-3 8.6196 1.8672 1 7 8.8288 31.6749 1.2460 1 5 31.6884
pores-3 4.45718 24.5046 714 15 12.9983 19.3002 2.6914 4 8 19.4104

References

[1] M. Benzi and M. Tuma, A sparse approximate inverse preconditioner for nonsymmetric linear systems,
SIAM J. Sci. comput. 19(3), (1998) 968-994.

[2] M. Benzi, R. Kouhia and M. Tuma, Stabilized and block approximate inverse preconditioners for problems
in solid and structural mechanics, Computer Meth. Appl. Mech. Eng., 190, 6533-6554 (2001)

[3] T. Davis, The SuiteSparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/matrices.

[4] Y. Saad, Iterative methods for sparse linear systems, SIAM, Philadelphia. 2nd edition (2003).

