

CELL RESPIRATION

Metabolism - the sum of all the chemical reactions that occur in the body. It is comprised of:

- anabolism synthesis of molecules, requires input of energy
- catabolism break down of molecules, releases energy..
- <u>aerobic</u> occurs in the presence of oxygen
- anaerobic occurs in the absence of oxygen..

METABOLIC REACTIONS

Photosynthesis

- Light energy converted into stored energy (glucose)
- CO₂ + H₂O => C₆H₁₂O₆ (glucose) + O₂
 Endergonic
- Cellular Respiration
 - Stored energy (glucose) converted into useable energy (ATP)
 - C₆H₁₂O₆ (glucose) + O₂ => CO₂ + H₂O
 - Exergonic
- NOTE-Both reactions have the same formula, but in different directions!!!

- Chemical reactions that transfer electrons from one substance to another are called oxidation-reduction reactions.
 - the loss of electrons (and hydrogens) is called oxidation
 - the gain of electrons (and hydrogens) is called reduction

CELLULAR RESPIRATION

Anaerobic Respiration

- Doesn't require oxygen
- Organisms without mitochondria
- Low energy yield (small amount of ATP)

ATP Phosphorylation:

ATP is formed from ADP by two different processes:

- 1. Substrate-Level Phosphorylation
- 2. Oxidative-Level Phosphorylation

CELLULAR RESPIRATION HAS FOUR PHASES

Four phases of cellular respiration:

- Glycolysis a metabolic pathway that converts glucose to pyruvate (occurs in cytoplasm)
- Preparatory (prep) Reaction (transition reaction)- pyruvate oxidized to a 2-carbon acetyl group (acetyl-CoA)
- **Citric Acid Cycle (Krebs Cycle)** complete oxidation of acetyl-CoA; carriers accept electrons to make NADH and $FADH_2$ (reduced form)
- Electron Transport Chain (ETC) NADH and FADH₂ give up electrons to ETC and energy is released to produce ATP

AEROBIC RESPIRATION STEP 3— CITRIC ACID CYCLE

O Citric Acid Cycle (a.k.a. Krebs Cycle) O

- 2 Acetyl-CoA enter
- Oxygen breaks Carbon-Carbon bonds
- Broken bonds release energy & electrons
- Energy used to form ATP
- Electrons captured by NAD⁺ and FAD⁺

$3NAD+6H \qquad 3NADH_2$ $2C_2H_3O-CoA \qquad 4CO_2$ $FAD+2H \quad FADH_2 \quad 2ADP+P \quad 2ATP$

AEROBIC RESPIRATION STEP 3— CITRIC ACID CYCLE

• Citric Acid Cycle (cont.)

- Carbon leaves as CO₂
- Intermediate products recycled, cycle starts again
- I Glucose = 2 Pyruvate
- Two complete "cycles" per glucose molecule
- Net gain (per glucose) of 4 CO₂, 6 NADH, 2 FADH₂, 2 ATP

Electron Transfer System (ETS)

- Starts with NADH & FADH₂ from previous steps
- Electrons flow through "chain" of membrane proteins
- Each protein then takes H+ from above molecules and pumps them into intermembrane space
- This sets up concentration gradient
- H⁺ moves down gradient through ATP synthase
- Movement forms ATP from ADP & P (32 net gain per glucose)

o Chemiosmosis

 ${\scriptstyle \bullet}$ Ends with electrons passed to ${\rm O}_2,$ combines with ${\rm H}^{\scriptscriptstyle +}$ to form ${\rm H}_2{\rm O}$

AEROBIC RESPIRATION STEP 4—OXIDATIVE PHOSPHORYLATION

● If no oxygen, electrons can't pass on

- This backs up to NADPH, so no H⁺ gradients
- No ATP forms, starving cells

Dr.M.R.Vaezi K., Hakim Sabzevari University

H+

electron

system

oxygen

OUTER COMPARTMENT

H+

H+

H'

tran

H⁺

POISONS & ETS Rotenone Used to kill insects & fish Blocks ETS near its start Prevents ATP synthesis, starving organisms of energy • Cyanide, Carbon Monoxide Blocks passage of electrons to oxygen Stops flow of electrons before chemiosmosis Like rotenone, prevents ATP synthesis Oligomycin Topical, kills skin fungal infections Blocks H⁺ moving through ATP Synthase, preventing ATP synthesis

AEROBIC RESPIRATION • Energy Harvest (net ATP per glucose) Glycolysis—2 ATP Citric Acid Cycle—2 ATP ETS—32 ATP • Total yield varies from 32-38 ATP depending on the type of cell

Metabolic Disorders

Glycogen Storage Disease (von Gierke's disease): Makes glycogen in liver, but unable to break glycogen down. So liver swells as more glycogen is made.

Lactic Acidosis: Excess buildup of lactic acid in blood. Causes – excess exercise, cancer, anemia, alcohol, liver failure.

Phenylketonuria (PKU): Cannot metabolize or convert amino acid, phenylalanine. Excess levels build in body – effect nervous system. Phenylalanine needed for color pigment, melanin.

- Oxygen-poor or unoxygenated environments
- After glycolysis, pyruvate converted to compounds other than acetyl-CoA
- Fermenters
 - Protists, bacteria
 - Marshes, bogs, deep sea, animal gut, sewage, canned food
- Fermentation produces a limited amount of ATP using organic molecules instead of oxygen as the final electron acceptor
 - Benefit of Fermentation
 - Provide a rapid burst of ATP without oxygen

Dr.M.R.Vaezi K., Hakim Sabzevari University

FERMENTATION HELPS PRODUCE NUMEROUS FOOD PRODUCTS

- Fermenting yeasts leaven bread and produce alcohol (beer and wine)
- Fermenting bacteria produce acids used to make yogurt, sour cream, and cheese
- Soy sauce is made by adding a mold and a combination of yeasts and fermenting bacteria to soybeans and wheat

ANAEROBIC RESPIRATION

- Glycolysis happens normally
- ${\scriptstyle \odot}$ Enough energy for many single-celled species
- \odot Not enough energy for large organisms

LACTATE FERMENTATION

• Can spoil food

- Some bacteria create food
 - Cheese, yogurt, buttermilk
 - Cure meats
 - Pickle some fruits & vegetables
- Muscle cells
 - When doing anaerobic exercise
 - Lactic acid builds up in cells, causing "the burn" felt during extensive exercise

FOOD BREAKDOWN

 ${\scriptstyle \odot}$ Different foods are broken down in different ways to be used as energy

Carbohydrates

• Starts with glycolysis and proceeds through respiration

Fats

- Broken down to glycerol and fatty acids
- Glycerol converted to pyruvate, enters respiration there
- Fatty acids converted into acetyl-CoA
- Very energy dense

Proteins

- Broken down into amino acids
- Amino acids converted into intermediates used in glycolysis, acetyl-CoA conversion, and the citric acid cycle

Dr.M.R.Vaezi K., Hakim Sabzevari University

EXERCISE BURNS FAT

• Excess glucose does not complete respiration but

instead is converted into glycerol and fatty acids. The acetyl-CoA subunits from the transition reaction are added together to produce fatty acids. This occurs primarily in adipose tissue and the liver.

